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Introduction

Discrete-time systems can be characterized by means of
mathematical equations or in terms of networks.

The mathematical characterization can be deduced by
analyzing a network representation of the discrete-time
system.

On the other hand, a network representation can be deduced
from the mathematical characterization by a process called
realization.

This presentation deals with the characterization, the network
representation, and the analysis of discrete-time systems.
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Types of Discrete-Time Systems

Two types of discrete-time systems can be identified:

nonrecursive

recursive
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Characterization of Nonrecursive Systems

Discrete-time systems are characterized in terms of difference
equations.

In a nonrecursive discrete-time system, the response at instant
nT can be a function of a number of values of the excitation
before nT , the value at nT , and a number of values of the
excitation after nT .

If instant nT is taken to be the present and the present
response depends on the past N values, the present value, and
the future K values of the excitation, then

y(nT ) = f [x(nT − NT ), . . . , x(nT − T ), x(nT ),

x(nT + T ), . . . , x(nT + KT )]
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Nonrecursive Systems

If we assume that the system is linear , then

y(nT ) = aNx(nT − NT ) + · · ·+ a1x(nT − T ) + a0x(nT )

+a−1x(nT + T ) + · · ·+ a−Kx(nT + KT )

= a−Kx(nT + KT ) + · · ·+ a−1x(nT + T )

+a0x(nT ) + a1x(nT − T ) + · · ·+ aNx(nT − NT )

=
N∑

i=−K

aix(nT − iT )

If the system is time-invariant, then the parameters ai are
constants and independent of time.

The above equation is a difference equation of order N + K
and it represents a noncausal nonrecursive system of the same
order.
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Nonrecursive Systems Cont’d

· · ·
y(nT ) = a−Kx(nT + KT ) + · · ·+ a−1x(nT + T ) + a0x(nT )

+a1x(nT − T ) + · · ·+ aNx(nT − NT )

=
N∑

i=−K

aix(nT − iT )

If the system is causal, the response at instant nT is independent
of x(nT + T ), x(nT + 2T ), . . ., x(nT + KT ) since these are
future values of the input with respect to instant nT .

For a causal nonrecursive discrete-time system, we have

ai = 0 for i ≤ −1
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Nonrecursive Systems Cont’d

Therefore, the difference equation becomes

y(nT ) = a0x(nT ) + a1x(nT − T ) + · · ·+ aNx(nT − NT )

=
N∑
i=0

aix(nT − iT )

We now have an Nth-order difference equation that represents a
linear , time-invariant, and causal digital system of the same order.
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Example

y(nT ) = a2x(nT − 2T ) + a1x(nT − T ) + a0x(nT )

+a−1x(nT + T ) + a−2x(nT + 2T )

nT

nT

x(nT)

y(nT )

a2

a1

a0

a
−1

a
−2

Fourth-order noncausal nonrecursive system
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Characterization of Recursive Systems

In recursive discrete-time systems, the response is a function of
elements in the excitation as well as elements in the response
sequence.

An (M + N)th-order, linear , time-invariant, noncausal recursive
discrete-time system can be represented by the difference equation

y(nT ) =
N∑

i=−M

aix(nT − iT )−
N∑
i=1

biy(nT − iT )

where the coefficients ai and bi are constants independent of time.

If nT is taken to be the present, the present response is a function
of the present value, the past N values, and the future M values of
the excitation and the past N values of the response.
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Recursive Systems Cont’d

· · ·
y(nT ) =

N∑
i=−M

aix(nT − iT )−
N∑
i=1

biy(nT − iT )

Some of the coefficients ai and bi can be zero.

If all coefficients bi are zero, then the above equation reduces
to the equation of a nonrecursive system.

In effect, a nonrecursive can be regarded as a special case of a
recursive system.
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Recursive Systems Cont’d
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Example

A fourth-order linear, time-invariant, noncausal, recursive discrete-time
system can be represented by the difference equation

y(nT ) = a−2x(nT + 2T ) + a−1x(nT + T ) + a0x(nT ) + a1x(nT − T )

a2x(nT − 2T )− b1y(nT − T )− b2y(nT − 2T )
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Example Cont’d

· · ·
y(nT ) = a−2x(nT + 2T ) + a−1x(nT + T ) + a0x(nT ) + a1x(nT − T )

a2x(nT − 2T )− b1y(nT − T )− b2y(nT − 2T )

nT

nT

x(nT)

y(nT )

a2

a1

a0

a
−1

a
−2

b2

b1

−1

Fourth-order noncausal recursive system
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Basic Elements

The basic elements of discrete-time systems are

The unit delay

The adder

The multiplier
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Basic Elements Cont’d

The unit delay is a memory device that can store a number.

When a clock pulse is received, it outputs the number stored
and records the number appearing at the input.

The adder may have several inputs and its operation is to
produce an output that is equal to the sum of the inputs when
a clock pulse is received.

In theory, the adder is assumed to operate instantaneously
although in practice a small delay will occur.

The multiplier has one input and one output and its operation
is to multiply the input by a constant when a clock pulse is
received.

Like the adder, it is assumed to operate instantaneously
although a small delay will occur in practice.
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Basic Elements Cont’d

x(nT) y(nT)Unit delay y(nT) = x(nT−T)

y(nT)

xK(nT)

x2(nT)

x1(nT)

Adder y(nT) = Σ xi(nT)
i=1

K

Multiplier y(nT) = mx(nT )

m

x(nT) y(nT)

Symbol Equation

Table 2.1    Elements of discrete-time systems

Element
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Implementation of Basic Elements

The implementation of the basic elements of discrete-time systems
can assume many forms depending on the

type of arithmetic (e.g., fixed-point, floating-point)

type of number representation (e.g., signed-magnitude, two’s
complement)

type of number quantization (e.g., truncation, rounding)

mode of operation (serial or parallel), etc.
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Networks for Discrete-Time Systems

Like analog filters, discrete-time systems can be represented by
networks which are collections of interconnected unit delays,
adders, and multipliers:

B A

(a)

x(nT ) y(nT )

p

(c)

x(nT ) y(nT )

m1

v1(nT ) v2(nT)

v3(nT )

m3

m4

m5

m2
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Representation by Networks

y(nT )

q3(nT )

x(nT )

3

1

2

1

4

1
2

q3(nT+T )

q2(nT )

q2(nT+T )

q1(nT )

q1(nT+T )
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Network Analysis

Network analysis is the process of obtaining some mathematical
characterization of a given network.

For example, we analyze a resonant circuit by finding its differential
equation (or the Laplace transform of the differential equation).

Similarly, we analyze a discrete-time system by obtaining its
difference equation (or the z transform of the difference equation).

Analysis can be simplified by using the shift operator E of numerical
analysis, which is defined as

E r f (nT ) = f (nT + rT )

A negative r delays the signal by a period |r |T whereas a positive r
advances the signal into the future by a period rT !

The shift operator is a linear operator that obeys the usual laws of
algebra (law of exponents, distributive law, etc.).
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Properties of the Shift Operator

1. Since

E r [a1f1(nT ) + a2f2(nT )] = a1f1(nT + rT ) + a2f2(nT + rT )

= a1E r f1(nT ) + a2E r f2(nT )

we conclude that E is a linear operator which distributes with
respect to a sum of functions of nT .

2. Since

E rEpf (nT ) = E r f (nT + pT ) = f (nT + rT + pT )

= f [nT + (r + p)T ]

= E r+pf (nT )

the shift operator obeys the law of exponents.
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Properties of the Shift Operator Cont’d

3. If
g(nT ) = E r f (nT )

then

E−rg(nT ) = E−rE r f (nT ) = E−r f (nT + rT ) = f (nT )

for all f (nT ), and if

f (nT ) = E−rg(nT )

then

E r f (nT ) = E rE−rg(nT ) = E rg(nT − rT ) = g(nT )

for all g(nT ).

Therefore, E−r is the inverse of E r and vice versa, i.e.,

E−rE r = E rE−r = 1
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Properties of the Shift Operator Cont’d

4. A linear combination of powers of E defines a meaningful
operator, e.g., if

f (E) = 1 + a1E + a2E2

then

f (E)f (nT ) = (1 + a1E + a2E2)f (nT )

= f (nT ) + a1Ef (nT ) + a2E2f (nT )

= f (nT ) + a1f (nT + T ) + a2f (nT + 2T )

Furthermore, given an operator f (E) of the above type, an
inverse operator f (E)−1 can be defined such that

f (E)−1f (E) = f (E)f (E)−1 = 1
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Properties of the Shift Operator Cont’d

5. If f1(E), f2(E), and f3(E) are operators that comprise linear
combinations of powers of E , they satisfy the distributive,
commutative, and associative laws of algebra, i.e.,

f1(E)[f2(E) + f3(E)] = f1(E)f2(E) + f1(E)f3(E)

f1(E)f2(E) = f2(E)f1(E)

f1(E)[f2(E)f3(E)] = [f1(E)f2(E)]f3(E)

Operators such as these can be used to construct more
complicated operators of the form

F (E) = f1(E)f2(E)−1 = f2(E)−1f1(E)

which may also be expressed as F (E) =
f1(E)

f2(E)
without

danger of ambiguity.
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Properties of the Shift Operator Cont’d

From the properties just discussed, it follows that the shift
operator can be treated like an algebraic quantity and linear
combinations of E can be treated like polynomials.

Note: An operator needs something to operate upon!
Therefore, all the following are meaningless:

y = (2 + 4x + 9x2)
d

dx

Y (s) = [2 + 4u(t)]L
y(nT ) = x(nT )(E + E2)

y(nT ) = x(nT )R
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Example

An Nth-order recursive discrete-time system can be represented by
the difference equation

y(nT ) =
N∑
i=0

aix(nT − iT )−
N∑
i=1

biy(nT − iT )

Obtain an expression for the response in terms of the shift operator.
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Example Cont’d

Solution From the definition of the shift operator, we can write

y(nT ) =
N∑
i=0

aiE−ix(nT )−
N∑
i=1

biE−iy(nT )

y(nT ) +
N∑
i=1

biE−iy(nT ) =
N∑
i=0

aiE−ix(nT )(
1 +

N∑
i=1

biE−i

)
y(nT ) =

N∑
i=0

aiE−ix(nT )

or y(nT ) =

( ∑N
i=0 aiE−i

1 +
∑N

i=1 biE−i

)
x(nT ) = F (E)x(nT )

where F (E) =

( ∑N
i=0 aiE−i

1 +
∑N

i=1 biE−i

)
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i=1 biE−i

)
x(nT ) = F (E)x(nT )

where F (E) =

( ∑N
i=0 aiE−i

1 +
∑N

i=1 biE−i

)
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Methods of Analysis

I By inspection

I By writing the network equations and then solving them

I By applying signal flow graphs

– using node elimination techniques

– using Mason’s gain formula
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Methods of Analysis Cont’d

Note: The analysis of discrete-time systems is much simpler than
that of continuous-time systems:

I In discrete-time systems the signals can assume only one form,
namely, they are sequences of numbers.

I In continuous-time systems signals can assume two forms,
namely, voltages and currents, which are strictly interrelated
through Kirchhoff’s laws.
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Example

Analyze the network:

B A

(a)

x(nT ) y(nT )

p

Solution Signal at node A: y(nT − T )

Signal at node B: py(nT − T )

Output signal: y(nT ) = x(nT ) + py(nT − T )

Frame # 29 Slide # 50 A. Antoniou Digital Filters – Secs. 2.3, 2.4



Example

Analyze the network:

(c)

x(nT ) y(nT )

m1

v1(nT ) v2(nT)

v3(nT )

m3

m4

m5

m2
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Example Cont’d

Solution

(c)

x(nT ) y(nT )

m1

v1(nT ) v2(nT)

v3(nT )

m3

m4

m5

m2

Define signals v1(nT ) and v2(nT ) as shown.

From the figure: v1(nT ) = m1x(nT ) + m3v2(nT ) + m5v3(nT ) (A)

and y(nT ) = m2v2(nT ) + m4v3(nT ) (B)

where v2(nT ) = E−1v1(nT ) v3(nT ) = E−1y(nT )
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Example Cont’d

· · ·
From the figure:

v1(nT ) = m1x(nT ) + m3v2(nT ) + m5v3(nT ) (A)

y(nT ) = m2v2(nT ) + m4v3(nT ) (B)

where v2(nT ) = E−1v1(nT ) v3(nT ) = E−1y(nT )

If we eliminate v2(nT ) and v3(nT ) in Eqs. (A) and (B), we have

(1−m3E−1)v1(nT ) = m1x(nT ) + m5E−1y(nT ) (C)

and (1−m4E−1)y(nT ) = m2E−1v1(nT ) (D)
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Example Cont’d

· · ·
(1−m3E−1)v1(nT ) = m1x(nT ) + m5E−1y(nT ) (C)

and (1−m4E−1)y(nT ) = m2E−1v1(nT ) (D)

Eq. (D) can be expressed as

(1−m3E−1)(1−m4E−1)y(nT ) = m2E−1(1−m3E−1)v1(nT )

and on eliminating (1−m3E−1)v1(nT ) using Eq. (C), we obtain

[1− (m3 + m4)E−1 + m3m4E−2]y(nT ) = m1m2E−1x(nT )

+m2m5E−2y(nT )

or [1− (m3 + m4)E−1 + (m3m4 −m2m5)E−2]y(nT ) = m1m2E−1x(nT )
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Example Cont’d

· · ·
or

[1− (m3 + m4)E−1 + (m3m4 −m2m5)E−2]y(nT ) = m1m2E−1x(nT )

Therefore, on eliminating the shift operator, we get

y(nT ) = a1x(nT − T ) + b1y(nT − T ) + b2y(nT − 2T )

where

a1 = m1m2, b1 = m3 + m4, b2 = m2m5 −m3m4
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Signal Flow-Graph Analysis

I A discrete-time network can be represented by an equivalent
signal flow graph which is made up of a collection of
interconnected directed branches and nodes.

I Such a signal flow graph is, on the one hand, a compact
representation of the system and, on the other, it can be used
to analyze the system.
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Signal Flow-Graph Analysis Cont’d

Given a discrete-time network, a corresponding signal flow graph
can be readily deduced by replacing

I each adder by a node with one outgoing branch and as many
incoming branches as there are inputs to the adder,

I each distribution node remains a distribution node,

I each multiplier by a directed branch with transmittance equal
to the constant of the multiplier,

I each direct transmission path by a directed branch with
transmittance equal to unity, and

I each unit delay by a directed branch with transmittance equal
to the shift operator E−1.
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Signal Flow-Graph Analysis Cont’d

Given a discrete-time network, a corresponding signal flow graph
can be readily deduced by replacing

I each adder by a node with one outgoing branch and as many
incoming branches as there are inputs to the adder,

I each distribution node remains a distribution node,

I each multiplier by a directed branch with transmittance equal
to the constant of the multiplier,
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to the shift operator E−1.
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Example

x(nT)

a3
 −b3

a2
 −b2

a1 −b1

a0

y(nT)

Fig. 6a

1B
B

1AA CC

 −b1

 −b2

 −b3

D
D

EE 1a0

a1

a2

a3

F

F

G

G

H
H

Fig. 6b

E−1

E−1

E−1
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Node Elimination

I A discrete-time network can be analyzed by reducing its signal
flow graph into a single transmittance between input node
x(nT ) and output node y(nT ) using node elimination
techniques.

I This approach tends to be time consuming, particularly for
complicated signal flow graphs, but has certain merits (for
example, one can interrupt the analysis and go for a coffee
without destroying his or her train of thought).
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Node Elimination Rules

I Rule 1: K branches in series with transmittances
T1, T2, . . . , TK can be replaced by a single branch with
transmittance T1T2 . . .TK , as shown:

(a)

BA

T1

T2 TK

C Y Z
A Z

T1T2 TK

From the first signal flow graph, we have

B = T1A, C = T2B

Now if we eliminate B in the second equation using the first
equation, we get

C = T1T2A

Frame # 39 Slide # 66 A. Antoniou Digital Filters – Secs. 2.3, 2.4



Node Elimination Rules Cont’d

· · ·

(a)

BA

T1

T2 TK

C Y Z
A Z

T1T2 TK

C = T1T2A

Similarly,
D = T3C

and if we eliminate C we get

D = T1T2T3A

and so on.
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Node Elimination Rules Cont’d

I Rule 2: K branches in parallel with transmittances
T1, T2, . . . , TK can be replaced by a single branch with
transmittance T1 + T2 + · · ·+ TK , as shown:

(b)

A Z

T1

T2

TK

A Z
T1+ T2+ +TK

From the first signal flow graph, we have

Z = T1A + T2A + T3A + · · · = (T1 + T2 + T3 + · · · )A
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Node Elimination Rules Cont’d

I Rule 3: A node with N incoming branches with
transmittances TI1, TI2, . . . , TIN and M outgoing branches
with transmittances TO1, TO2, . . . , TOM can be replaced by
N ×M branches with transmittances

TI1TO1, TI1TO2, . . . , TINTOM

as shown:

I1

I2

IN

TI1 TO1

TO2
TI2

TIN

TOM

O1

O2

OM

I1

I2

IN

O1

O2

OM

TI1TO1

TINTO1

TI1TO2
TI2TO1

TI2TOM

TI2TO2

TINTOM

TINTO2

TI1TOM

(c)

P
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Node Elimination Rules Cont’d

I1

I2

IN

TI1 TO1

TO2
TI2

TIN

TOM

O1

O2

OM

I1

I2

IN

O1

O2

OM

TI1TO1

TINTO1

TI1TO2
TI2TO1

TI2TOM

TI2TO2

TINTOM

TINTO2

TI1TOM

(c)

P

From the signal flow graph, we have

P = TI1I1 + TI2I2 + · · ·+ TIN IN

and
O1 = TO1P, O2 = TO2P, . . . , OM = TOMP
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Node Elimination Rules Cont’d

· · ·
P = TI1I1 + TI2I2 + · · ·+ TIN IN

and
O1 = TO1P, O2 = TO2P, . . . , OM = TOMP

On eliminating variable P, we get

O1 = TI1TO1I1 + TI2TO1I2 + · · ·+ TINTO1IN

O2 = TI1TO2I1 + TI2TO2I2 + · · ·+ TINTO2IN
...

OM = TI1TOM I1 + TI2TOM I2 + · · ·+ TINTOM IN
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Node Elimination Rules Cont’d

· · ·
O1 = TI1TO1I1 + TI2TO1I2 + · · ·+ TINTO1IN

O2 = TI1TO2I1 + TI2TO2I2 + · · ·+ TINTO2IN
... =

...

OM = TI1TOM I1 + TI2TOM I2 + · · ·+ TINTOM IN

I1

I2

IN

TI1 TO1

TO2
TI2

TIN

TOM

O1

O2

OM

I1

I2

IN

O1

O2

OM

TI1TO1

TINTO1

TI1TO2
TI2TO1

TI2TOM

TI2TO2

TINTOM

TINTO2

TI1TOM

(c)

P

Frame # 45 Slide # 72 A. Antoniou Digital Filters – Secs. 2.3, 2.4



Node Elimination Rules Cont’d

I Rule 4a: K self-loops at a given node with transmittances
T1, T2, . . . , TK can be replaced by a single self-loop with
transmittance T1 + T2 + · · ·+ TK , as shown:

(d)

A Z

T1

T2

TK

T1+ T2+ +TK

A Z

Note: This is to be expected since self-loops are, after all, parallel
branches.
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Node Elimination Rules Cont’d

I Rule 4b: A self-loop at a given node with transmittance TSL

can be eliminated by dividing the transmittance of each and
every incoming branch by 1− TSL as shown:

(e)

I1

I2

O
M

T
I2

T
I1

T
SL

T
MO

T
MO

I1

I2

O
M

TI1

1−T
SL

TI2

1−T
SL
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Node Elimination Rules Cont’d

(e)

I1

I2

O
M

T
I2

T
I1

T
SL

T
MO

T
MO

I1

I2

O
M

TI1

1−T
SL

TI2

1−T
SL

From the signal flow graph at the left, we have

M = TI1I1 + TI2I2 + TSLM

Solving for variable M, we get

M =
TI1

1− TSL
I1 +

TI2

1− TSL
I2

which is represented by the signal flow graph at the right.
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Strategy

I At each step of the procedure, eliminate the node or nodes
that would result in the smallest number of new paths.

Note: The number of new paths for a given node is equal to
the number incoming branches times the number of outgoing
nodes, i.e., N ×M.

I When branches are eliminated draw strokes on them for
reckoning purposes.

I At the end of the elimination process, each incoming branch
should have as many strokes as there are outgoing branches
and each outgoing branch should have as many strokes as
there are incoming branches.
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Strategy Cont’d

TI1 TO1

TO2

TI2
TO3

O1I1
I1

I2
I2

O2

O3

O1

O2

O3

TI1TO1

TI1TO2

TI2TO1

TI2TO2

TI2TO3

TI1TO3
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Example

Analyze the discrete-time system shown in the figure using the
node elimination method.

x(nT)

a3
 −b3

a2
 −b2

a1 −b1

a0

y(nT)

Fig. 6a

1B
B

1AA CC

 −b1

 −b2

 −b3

D
D

EE 1a0

a1

a2

a3

F

F

G

G

H
H

Fig. 6b

E−1

E−1

E−1
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Example Cont’d

Solution

I Eliminate node H in Fig. 6a, combine parallel branches in
Fig. 8a, and eliminate node G in Fig. 8b:

1B1A C

 −b1

 −b2

 −b3

D E1a0

a1

a2

a3

F

G

H

Fig. 6a

E−1

E−1

E−1

Fig. 8a

1B1A C

 −b1

 −b2

D E1a0

a1

a2

a3

F

G

E−1 E−1
 −b3E

−1

E−1

Fig. 8b

1B1A C

 −b1

 −b2

D E1a0

a1

a2+a3
F

G

E−1

E−1
 −b3E

−1

E−1

Fig. 8c

1B1A C

 −b1

D E1a0

a1

F

E −1

 −b2  −b3E −2E −1 E −1
a2 a3E−2

+
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Example Cont’d

I Combine parallel branches in Fig. 8c, eliminate node F in
Fig. 8d and node C in Fig. 8e:

Fig. 8d

1B1A C D E1a0

F

E−1

 −b1 −b2  −b3E−2E−1
a1+ E−1

a2 a3E −2
+

Fig. 8c

1B1A C

 −b1

D E1a0

a1

F

E −1

 −b2  −b3E −2E −1 E −1
a2 a3E−2

+

Fig. 8f

T1

T2

B1A D E1

T1 = a0 a1E −1 
+ a3E −3E −2

+a2 +

−b1E −1
 −b3 E−3

  −b2 E−2
T2 =

1B1A C D E1a0

 −b1E−1 −b3E−3 −b2 E−2
a1E−1 

+ a3E−3E−2
+a2 

Fig. 8e
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Example Cont’d

I Eliminate self-loop and node D in Fig. 8f and node B in
Fig. 8g:

Fig. 8f

T1

T2

B B1A AD E E1

T1 = a0 a1E −1 
+ a3E −3E −2

+a2 +

−b1E −1
 −b3 E−3

  −b2 E−2
T2 =

Fig. 8g

Fig. 8h

T1

y(nT )x(nT )

1−T2

1

T1

1−T2
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Example Cont’d

Hence

y(nT ) =

(
T1

1− T2

)
x(nT )

or (1− T2)y(nT ) = T1x(nT )

and, therefore,
y(nT ) = T1x(nT ) + T2y(nT )

Since T1 = a0 + E−1a1 + E−2a2 + E−3a3

and T2 = −[E−1b1 + E−2b2 + E−3b3]

we obtain

y(nT ) = a0x(nT ) + a1x(nT − T ) + a2x(nT − 2T ) + a3x(nT − 3T )

−b1y(nT − T )− b2y(nT − 2T )− b3y(nT − 3T )
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Mason’s Gain Formula

An alternative approach to network analysis involves the use of
Mason’s gain formula

yj(nT ) =
1

∆

(∑
k

Tk∆k

)
xi (nT )

where

I xi (nT ) and yj(nT ) are the excitation applied at node i and
the response of the system at node j , respectively.

I Tk is the transmittance of the kth direct path between nodes
i and j ,

I ∆ is the determinant of the flow graph, and

I ∆k is the determinant of the subgraph that does not touch
(has no nodes or branches in common with) the kth direct
path between nodes i and j .
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Mason’s Gain Formula Cont’d

The graph determinant ∆ is given by

∆ = 1−
∑
u

Lu1 +
∑
v

Pv2 −
∑
w

Pw3 + · · ·

where

I Lu1 is the loop transmittance of the uth loop,

I Pv2 is the product of the loop transmittances of the v th pair
of nontouching loops (loops that have neither nodes nor
branches in common),

I Pw3 is the product of loop transmittances of the w th triplet
of nontouching loops, etc.

I The subgraph determinant ∆k can be determined by applying
the formula for ∆ to the subgraph that does not touch the
kth direct path between nodes i and j .
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Example

Analyze the discrete-time system shown in the figure using
Mason’s gain formula:

x(nT)

a3
 −b3

a2
 −b2

a1 −b1

a0

y(nT)

Fig. 6a

1B
B

1AA CC

 −b1

 −b2

 −b3

D
D

EE 1a0

a1

a2

a3

F

F

G

G

H
H

Fig. 6b

E−1

E−1

E−1
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Example Cont’d

Solution

1B1A C

 −b1

 −b2

 −b3

D E1a0

a1

a2

a3

F

G

H

Fig. 6a

E−1

E−1

E−1
Direct Paths: 

ABCDE,  ABCFDE

ABCFGDE, ABCFGHDE

Loops:

BCFB, BCFGB, BCFGHB

NOTE: CDFC is not a loop!

Transmittances of direct paths:

T1 = a0, T2 = a1E−1, T3 = a2E−2, T4 = a3E−3

Transmittances of loops:

L11 = −b1E−1, L21 = −b2E−2, L31 = −b3E−3
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Example Cont’d

1B1A C

 −b1

 −b2

 −b3

D E1a0

a1

a2

a3

F

G

H

Fig. 6a

E−1

E−1

E−1
Direct Paths: 

ABCDE,  ABCFDE

ABCFGDE, ABCFGHDE

Loops:

BCFB, BCFGB, BCFGHB

NOTE: CDFC is not a loop!

All loops are touching, since branch BC is common to all of them,
and so

Pv2 = Pw3 = · · · = 0

Thus, Mason’s gain formula gives

∆ = 1 + b1E−1 + b2E−2 + b3E−3
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Example Cont’d

1B1A C

 −b1

 −b2

 −b3

D E1a0

a1

a2

a3

F

G

H

Fig. 6a

E−1

E−1

E−1
Direct Paths: 

ABCDE,  ABCFDE

ABCFGDE, ABCFGHDE

Loops:

BCFB, BCFGB, BCFGHB

NOTE: CDFC is not a loop!

Branch BC is common to all direct paths between input and
output. Hence it does not appear in any one of the subgraphs.
Thus, no loops are present in the k subgraphs and so

∆1 = ∆2 = ∆3 = ∆4 = 1
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Example Cont’d

Therefore, Mason’s gain formula gives

yj(nT ) =
1

∆

(∑
k

Tk∆k

)
xi (nT )

=

( ∑3
i=0 aiE−i

1 +
∑3

i=1 biE−i

)
x(nT )

or

y(nT ) =
3∑

i=0

aiE−ix(nT )−
3∑

i=1

biE−iy(nT )
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This slide concludes the presentation.

Thank you for your attention.

Frame # 63 Slide # 98 A. Antoniou Digital Filters – Secs. 2.3, 2.4


