Copyright (© 2018 Andreas Antoniou
Victoria, BC, Canada
Email: aantoniou@ieee.org

July 9, 2018



Time-domain analysis is the process of finding the response of a
system, y(nT), to a given excitation, x(nT).
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of discrete-time systems:
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¢ Induction method

¢ State-space method

¢ z transform method
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¢ The induction method involves solving the difference equation
using induction.

¢ The method is somewhat primitive and inefficient.

¢ However, it is an intuitive method that demonstrates the
mode of operation of a discrete-time system.

¢ It is useful as an introduction to time-domain analysis but it
tends to become quite complicated in higher-order
discrete-time systems.
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¢ The state-space method entails the manipulation of matrices.

¢ It is quite useful in applications where routines for the
manipulation of matrices are available, e.g., in MATLAB.

¢ It is applicable to time-dependent systems.
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¢ The z transform method is the most efficient and most
frequently used method among the available methods.

¢ Its main disadvantage is that it cannot be applied to
time-dependent or nonlinear systems.

¢ The details of the method can be found in Chap. 5.



¢ The induction method for time-domain analysis can be
illustrated by finding the impulse, unit-step, and sinusoidal
response of a simple recursive system.

As will be shown, all that is necessary is simple algebra.



Find the impulse response of the recursive system
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Solution The difference equation is

y(nT)=x(nT)+ py(nT —T)



Example Cont'd

y(nT)=x(nT)+ py(nT —T)
If x(nT)=46(nT), we have

y(nT)=46(nT) + py(nT — T)

For an initially relaxed system, y(nT) = 0 for n < 0 and hence we have

y(0) = 8(0) +py(~T)=1+0=1
y(T) =0(T)+py(0)=0+px1=p
y(2T) = 6Q2T) +py(T)=0+p-p=p°

y(nT) = u(nT)p" m

The unit-step u(nT) is added to ensure that y(nT) =0 for n < 0.
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Assuming that the system shown is initially relaxed, find the
unit-step response:

X(nT) o———(F) : o y(nT)




Example Cont'd

Solution The difference equation is

y(nT) =x(nT) +py(nT = T)
If x(nT) = u(nT), we have

y(nT) =u(nT) +py(nT = T)

For an initially relaxed system, y(nT) = 0 for n < 0 and hence we
have

y(0) = u(0)+py(—-T)=1+0=1
y(T) =u(T)+py(0)=1+p
y(2T) = u@T) + py(T) =1+ p+p?

y(nT) = u(nT)>_ p*
k=0
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n

y(nT) =u(nT) Y p*

k=0
We can write
y(nT) = u(nT)(1+p+p>+ - +p") (A)
py(nT) = u(nT)(p+ p? + -+ p" + p(rb)y (B)

Subtracting Eq. (B) from Eq. (A), we get

y(nT) = py(nT) = u(nT)(L - p"*V))

or
1— p(n+1)

y(nT) = u(nT) =7
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p(n+1)
y(nT) = u(nT)

Therefore, there are three cases to consider:

(i) p<1
(i) p=1
(i) p>1
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1 — pnt+1)
y(nT) = u(nT)=——F——

(i) For p < 1, the steady-state response is obtained by evaluating
y(nT) for n — oo, i.e.,

lim y(nT)=—— =

n—00 1—p



Example Cont'd

1 — pnt+1)
y(nT) = u(nT)=——F——

(i) For p < 1, the steady-state response is obtained by evaluating
y(nT) for n — oo, i.e.,

. 1
n||—>n<loy(nT) B 1-— P -
(ii) For p =1, using I'Hopital’s rule we get

d(1—p"V)/dp _ 1

YT) = 0 = = )

Hence

lim y(nT) 00 m

n—oo
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1 — pnt+1)
y(nT) = u(nT)lﬁiip
(iii) Forp>1
nlLrgoy(nT)% o — 00 m
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Assuming zero initial conditions, find the response of the recursive
system

x(nT) o——(F) - o y(nT)
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to the sinusoidal excitation

x(nT)=u(nT)sinwnT
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Solution As before, the difference equation is
y(nT)=x(nT)+ py(nT —T)
If x(nT) =u(nT)sinwnT, we have
y(nT) =Rx(nT) = u(nT)sinwnT + py(nT — T)
The system is linear and so
y(nT) = Rlu(nT)sinwunT] =R [u(nT)zlj(ejw”T — e JwnT)
= % [Ru(nT)ej"”’T — Ru(nT)e*jw"T}
= 5;(nT) = y2(nT)]
where
yi(nT) = Ru(nT)e*™™ and  y»(nT) = Ru(nT)eI*""
S  Dicitol Fiters — Sec.25
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y(nT) =x(nT)+ py(nT —T)
yi(nT) = Ru(nT)e“"T and ys(nT)=Ru(nT)e /T
The partial response y1(nT) can be obtained as
y(nT) =R [u(nT)&T| = u(nT)&" + pya(nT — T)
Hence

y1(0) = u(0)e® + py1(—
n(T) = €7+ pn(0)
n(2T) = &7 + py(T

T)=
=T
)= e’2‘“T + peT 4 p?

yi(nT) = u(nT)(*"T + pel(=DT ... 4 pln-D)gieT | 5m)
= u(nT)e“"T (14 pe T 4 ... 4 plel=imwT)y
B NN  Dicicol Filters — Sec. 25
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}/1(nT) = U(nT)ejwnT(l =+ peijw-r 4+ .4 pne(fjan))
= u(nT)ejwnTZ pke(fjkwnT)
k=0

This is a geometric series in powers of pe(=7*"T) and its sum can

be obtained as
ejwnT . p(n+1)e—ij

]_ —_ pe—ij

yi(nT) = u(nT)
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jwnT _ 4(n+1) ,—jwT jwT
— P e _ e jwnT __ (n+1) ;—jw T
)/1(nT) - u(nT) 1 _ pe_jw'r T oewT _ px(ef —P €

Now consider the function

e T _coswTl +jsinwT
e“T —p  coswT +jsinwT —p

H(e*T) =

and let _ .
H(eT) = M(w)e//®)

. 1
where M(w) = [H(eT)] = V1+p2—2pcoswT

and O(w) = arg H(e®T) =wT —tan"! sinw T

coswT —p
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eij

m % (ejwnT B p(n+1)e—ij)

yi(nT) =

and . .
H(e*T) = M(w)e’®)

, 1
where M(w) = [H(e*T)| = V1+p2—2pcoswT

and O(w) = arg H(e*T) =wT —tan™! Sne

coswT —p

By using these relations, y1(wT) can be expressed as

)/1(”7—) _ u(nT)M(w)(ej[O(w)+wnT] o p(n+1)ej[9(w)—wT])
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y1(nT) _ u(nT)M(w)(ej[Q(w)+wnT] o p(n+1)ej[9(w)7w7—])
By replacing w by —w in y1(nT), we get
y2(n7-) _ u(nT)M(w)(ej[G(—w)—wnT] o p(n+1)ej[9(—w)+wT])

By noting that M(w) is an even function and é(w) an odd function
of w, i.e.,

M(—w) = M(w) and 0O(—w) = —0(w)
we can readily show that

y(nT) = 3:ln(nT) = yo(nT)]
= u(nT)M(w)sinfwnT + 6(w)]
—u(nT)M(w)p" ) sin[0(w) — wT]



Example Cont'd

y(nT) = u(nT)M(w)sinfwnT + 6(w)]
—u(nT)M(w)p" ) sin[f(w) — wT]

As can be seen, the sinusoidal response of the system consists of
two components.

If p < 1, the second term represents a transient component that
reduces to zero as n — oco. Therefore,

y(nT) = nIl_)rr;() y(nT) = M(w)sinfwnT + 6(w)] =

If p =1, the transient component is a constant. If p > 1 the
transient component tends to infinity as n — oo i.e.,

y(nT) = ILm y(nT) 500 m
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¢ The time-domain analysis has shown that the response of a
first-order recursive system to a sinusoidal excitation of unity
amplitude and zero phase angle, i.e.,

x(nT) =sin(wnT)
is a sinusoid of amplitude M(w) and angle 6(w), i.e.,
x(nT) = M(w)sin[wnT + 8(w)]

provided that the transient component decays to zero.
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¢ It turns out that this is a general property of recursive as well
as nonrecursive systems in general.



¢ The time-domain analysis has shown that the response of a
first-order recursive system to a sinusoidal excitation of unity
amplitude and zero phase angle, i.e.,

x(nT) =sin(wnT)
is a sinusoid of amplitude M(w) and angle 6(w), i.e.,
x(nT) = M(w)sin[wnT + 8(w)]

provided that the transient component decays to zero.

¢ It turns out that this is a general property of recursive as well
as nonrecursive systems in general.

¢ The transient response of a discrete-time system will decay to
zero only if the system is stable (see Sec. 2.7).



This slide concludes the presentation.
Thank you for your attention.



