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Introduction

Time-domain analysis is the process of finding the response of a
system, y(nT ), to a given excitation, x(nT ).

x(nT )

nTnT

x(nT )

y(nT )

y(nT )Discrete-time system
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Time-Domain Analysis

Three different methods are available for the time-domain analysis
of discrete-time systems:

� Induction method

� State-space method

� z transform method
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Induction Method

� The induction method involves solving the difference equation
using induction.

� The method is somewhat primitive and inefficient.

� However, it is an intuitive method that demonstrates the
mode of operation of a discrete-time system.

� It is useful as an introduction to time-domain analysis but it
tends to become quite complicated in higher-order
discrete-time systems.
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State-Space Method

� The state-space method entails the manipulation of matrices.

� It is quite useful in applications where routines for the
manipulation of matrices are available, e.g., in MATLAB.

� It is applicable to time-dependent systems.
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Z Transform Method

� The z transform method is the most efficient and most
frequently used method among the available methods.

� Its main disadvantage is that it cannot be applied to
time-dependent or nonlinear systems.

� The details of the method can be found in Chap. 5.
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Induction Method Cont’d

� The induction method for time-domain analysis can be
illustrated by finding the impulse, unit-step, and sinusoidal
response of a simple recursive system.

As will be shown, all that is necessary is simple algebra.
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Example

Find the impulse response of the recursive system

B A

(a)

x(nT ) y(nT )

p

assuming an initially relaxed system.
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Example Cont’d

· · ·

B A

(a)

x(nT ) y(nT )

p

Solution The difference equation is

y(nT ) = x(nT ) + py(nT − T )
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Example Cont’d

· · ·
y(nT ) = x(nT ) + py(nT − T )

If x(nT ) = δ(nT ), we have

y(nT ) = δ(nT ) + py(nT − T )

For an initially relaxed system, y(nT ) = 0 for n < 0 and hence we have

y(0) = δ(0) + py(−T ) = 1 + 0 = 1

y(T ) = δ(T ) + py(0) = 0 + p × 1 = p

y(2T ) = δ(2T ) + py(T ) = 0 + p · p = p2

...

y(nT ) = u(nT )pn

The unit-step u(nT ) is added to ensure that y(nT ) = 0 for n < 0.
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Example Cont’d

nT

y(nT )

nT

y(nT )

nT

y(nT )

p > 1

p = 1p < 1

Frame # 11 Slide # 19 A. Antoniou Digital Filters – Sec. 2.5



Example

Assuming that the system shown is initially relaxed, find the
unit-step response:

B A

(a)

x(nT ) y(nT )

p
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Example Cont’d

Solution The difference equation is

y(nT ) = x(nT ) + py(nT − T )

If x(nT ) = u(nT ), we have

y(nT ) = u(nT ) + py(nT − T )

For an initially relaxed system, y(nT ) = 0 for n < 0 and hence we
have

y(0) = u(0) + py(−T ) = 1 + 0 = 1

y(T ) = u(T ) + py(0) = 1 + p

y(2T ) = u(2T ) + py(T ) = 1 + p + p2

...

y(nT ) = u(nT )
n∑

k=0

pk
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Example Cont’d

· · ·
y(nT ) = u(nT )

n∑
k=0

pk

We can write

y(nT ) = u(nT )(1 + p + p2 + · · ·+ pn) (A)

py(nT ) = u(nT )(p + p2 + · · ·+ pn + p(n+1)) (B)

Subtracting Eq. (B) from Eq. (A), we get

y(nT )− py(nT ) = u(nT )(1− p(n+1))

or

y(nT ) = u(nT )
1− p(n+1)

1− p
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Example Cont’d

· · ·
y(nT ) = u(nT )

1− p(n+1)

1− p

Therefore, there are three cases to consider:

(i) p < 1

(ii) p = 1

(iii) p > 1
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Example Cont’d

· · ·
y(nT ) = u(nT )

1− p(n+1)

1− p

(i) For p < 1, the steady-state response is obtained by evaluating
y(nT ) for n→∞, i.e.,

lim
n→∞

y(nT ) =
1

1− p

(ii) For p = 1, using l’Hôpital’s rule we get

y(nT ) = lim
p→1

d(1− p(n+1))/dp

d(1− p)/dp
= n + 1

Hence
lim
n→∞

y(nT )→∞
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Example Cont’d

· · ·
y(nT ) = u(nT )

1− p(n+1)

1− p

(iii) For p > 1

lim
n→∞

y(nT ) ≈ pn

p − 1
→∞
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Example Cont’d

nT

y(nT )

nT

y(nT )

nT

y(nT )

p > 1

p = 1p < 1

Frame # 18 Slide # 27 A. Antoniou Digital Filters – Sec. 2.5



Example

Assuming zero initial conditions, find the response of the recursive
system

B A

(a)

x(nT ) y(nT )

p

to the sinusoidal excitation

x(nT ) = u(nT ) sinωnT
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Example Cont’d

Solution As before, the difference equation is

y(nT ) = x(nT ) + py(nT − T )

If x(nT ) = u(nT ) sinωnT , we have

y(nT ) = Rx(nT ) = u(nT ) sinωnT + py(nT − T )

The system is linear and so

y(nT ) = R[u(nT ) sinωnT ] = R
[
u(nT ) 1

2j (e
jωnT − e−jωnT )

]
= 1

2j

[
Ru(nT )e jωnT −Ru(nT )e−jωnT

]
= 1

2j [y1(nT )− y2(nT )]

where

y1(nT ) = Ru(nT )e jωnT and y2(nT ) = Ru(nT )e−jωnT
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Example Cont’d

· · ·
y(nT ) = x(nT ) + py(nT − T )

y1(nT ) = Ru(nT )e jωnT and y2(nT ) = Ru(nT )e−jωnT

The partial response y1(nT ) can be obtained as

y1(nT ) = R
[
u(nT )e jωnT

]
= u(nT )e jωnT + py1(nT − T )

Hence

y1(0) = u(0)e0 + py1(−T ) = 1

y1(T ) = e jωT + py1(0) = e jωT + p

y1(2T ) = e j2ωT + py1(T ) = e j2ωT + pe jωT + p2

...

y1(nT ) = u(nT )(e jωnT + pe jω(n−1)T + · · ·+ p(n−1)e jωT + pn)

= u(nT )e jωnT (1 + pe−jωT + · · ·+ pne(−jnωT ))
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Example Cont’d

· · ·
y1(nT ) = u(nT )e jωnT (1 + pe−jωT + · · ·+ pne(−jnωT ))

= u(nT )e jωnT
n∑

k=0

pke(−jkωnT )

This is a geometric series in powers of pe(−jωnT ) and its sum can
be obtained as

y1(nT ) = u(nT )
e jωnT − p(n+1)e−jωT

1− pe−jωT
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Example Cont’d

· · ·
y1(nT ) = u(nT )

e jωnT − p(n+1)e−jωT

1− pe−jωT
=

e jωT

e jωT − p
×(e jωnT−p(n+1)e−jωT )

Now consider the function

H(e jωT ) =
e jωT

e jωT − p
=

cosωT + j sinωT

cosωT + j sinωT − p

and let
H(e jωT ) = M(ω)e jθ(ω)

where M(ω) = |H(e jωT )| =
1√

1 + p2 − 2p cosωT

and θ(ω) = arg H(e jωT ) = ωT − tan−1
sinωT

cosωT − p
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Example Cont’d

· · ·
y1(nT ) =

e jωT

e jωT − p
× (e jωnT − p(n+1)e−jωT )

and
H(e jωT ) = M(ω)e jθ(ω)

where M(ω) = |H(e jωT )| =
1√

1 + p2 − 2p cosωT

and θ(ω) = arg H(e jωT ) = ωT − tan−1
sinωT

cosωT − p

By using these relations, y1(ωT ) can be expressed as

y1(nT ) = u(nT )M(ω)(e j[θ(ω)+ωnT ] − p(n+1)e j[θ(ω)−ωT ])
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Example Cont’d

· · ·
y1(nT ) = u(nT )M(ω)(e j[θ(ω)+ωnT ] − p(n+1)e j[θ(ω)−ωT ])

By replacing ω by −ω in y1(nT ), we get

y2(nT ) = u(nT )M(ω)(e j[θ(−ω)−ωnT ] − p(n+1)e j[θ(−ω)+ωT ])

By noting that M(ω) is an even function and θ(ω) an odd function
of ω, i.e.,

M(−ω) = M(ω) and θ(−ω) = −θ(ω)

we can readily show that

y(nT ) = 1
2j [y1(nT )− y2(nT )]

= u(nT )M(ω) sin[ωnT + θ(ω)]

−u(nT )M(ω)p(n+1) sin[θ(ω)− ωT ]
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Example Cont’d

· · ·
y(nT ) = u(nT )M(ω) sin[ωnT + θ(ω)]

−u(nT )M(ω)p(n+1) sin[θ(ω)− ωT ]

As can be seen, the sinusoidal response of the system consists of
two components.

If p < 1, the second term represents a transient component that
reduces to zero as n→∞. Therefore,

ỹ(nT ) = lim
n→∞

y(nT ) = M(ω) sin[ωnT + θ(ω)]

If p = 1, the transient component is a constant. If p > 1 the
transient component tends to infinity as n→∞ i.e.,

ỹ(nT ) = lim
n→∞

y(nT )→∞
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Example Cont’d

1

1.0

nT

nT

M(ω)

−1.0

x(nT )

y(nT )

θ(ω)

Sinusoidal response if p < 1
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Sinusoidal Response

� The time-domain analysis has shown that the response of a
first-order recursive system to a sinusoidal excitation of unity
amplitude and zero phase angle, i.e.,

x(nT ) = sin(ωnT )

is a sinusoid of amplitude M(ω) and angle θ(ω), i.e.,

x(nT ) = M(ω) sin[ωnT + θ(ω)]

provided that the transient component decays to zero.

� It turns out that this is a general property of recursive as well
as nonrecursive systems in general.

� The transient response of a discrete-time system will decay to
zero only if the system is stable (see Sec. 2.7).
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This slide concludes the presentation.

Thank you for your attention.
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