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Introduction

N The convolution summation is of considerable importance for
the characterization, representation, analysis, and design of
discrete-time systems.

N This presentation will deal with the derivation, properties, and
applications of the convolution summation.
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Derivation

N An arbitrary excitation x(nT ) can be considered to be made
up of a series of impulses as shown:
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Derivation Cont’d

N What has been done graphically can now be done in terms of
algebra.

N An arbitrary signal can be written as

x(nT ) =
∞∑

k=−∞
xk(nT )

where xk(nT ) =

{
x(kT ) for n = k

0 otherwise

= x(kT )δ(nT − kT )

N Hence

x(nT ) =
∞∑

k=−∞
x(kT )δ(nT − kT ) (A)
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Derivation Cont’d

· · ·
x(nT ) =

∞∑
k=−∞

x(kT )δ(nT − kT ) (A)

N Consider a linear time-invariant system and assume that its
impulse response is given by

h(nT ) = Rδ(nT )

N From Eq. (A), we have

y(nT ) = Rx(nT ) = R
∞∑

k=−∞
x(kT )δ(nT − kT )

N Since the system is linear,

y(nT ) =
∞∑

k=−∞
x(kT )Rδ(nT − kT )
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Derivation Cont’d

· · ·
y(nT ) =

∞∑
k=−∞

x(kT )Rδ(nT − kT )

N The system is also time-invariant and hence we get

y(nT ) =
∞∑

k=−∞
x(kT )h(nT − kT )

N This relation is known as the convolution summation.

Frame # 6 Slide # 10 A. Antoniou Digital Filters – Secs. 2.6, 2.7



Derivation Cont’d
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Alternative Form

N If we let k = n − k ′ in the convolution summation

y(nT ) =
∞∑

k=−∞

x(kT )h(nT − kT )

then k ′ = n − k .

N If
k →∞ then k ′ → −∞

and if
k → −∞ then k ′ →∞

N Hence the convolution summation can also be expressed as

y(nT ) =
−∞∑
k′=∞

x(nT − k ′T )h(k ′T )
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Alternative Form Cont’d

· · ·
y(nT ) =

−∞∑
k ′=∞

x(nT − k ′T )h(k ′T )

N Dropping the primes and reversing the order of summation,
we obtain the identity

y(nT ) =
∞∑

k=−∞
x(kT )h(nT − kT ) =

∞∑
k=−∞

h(kT )x(nT − kT )
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Special Cases

N Two special cases of the convolution summation are of
particular interest.

N If the system is causal, we have h(nT ) = 0 for n < 0, and so

y(nT ) =
n∑

k=−∞
x(kT )h(nT − kT ) =

∞∑
k=0

h(kT )x(nT − kT )

N If, in addition, x(nT ) = 0 for n < 0, we have

y(nT ) =
n∑

k=0

x(kT )h(nT − kT ) =
n∑

k=0

h(kT )x(nT − kT )
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Important Property

· · ·

y(nT ) =
n∑

k=0

x(kT )h(nT − kT ) =
n∑

k=0

h(kT )x(nT − kT )

Evidently, if the impulse response h(nT ) of a discrete-time system
is known, its response to an arbitrary excitation can be readily
determined by using the convolution summation.
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Graphical Representation
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Example

Using the convolution summation, find the unit-step response of a
discrete-time system characterized by the equation

y(nT ) = x(nT ) + py(nT − T )

The system has an impulse response

h(nT ) = u(nT )pn

and is initially relaxed (i.e., y(nT ) = 0 for n < 0).
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Example Cont’d

Solution The convolution summation gives

y(nT ) = Ru(nT ) =
∞∑

k=−∞

u(kT )pku(nT − kT )

= · · ·+

k=−1︷ ︸︸ ︷
u(−T )p−1u(nT + T ) +

k=0︷ ︸︸ ︷
u(0)p0u(nT ) +

k=1︷ ︸︸ ︷
u(T )p1u(nT − T )

+ · · ·+
k=n︷ ︸︸ ︷

u(nT )pnu(0) +

k=n+1︷ ︸︸ ︷
u(nT + T )pn+1u(−T ) + · · ·

For n < 0, the unit step assumes a value of zero and hence we get
y(nT ) = 0 since all the terms are zero.
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Example Cont’d

· · ·
y(nT ) = Ru(nT ) =

∞∑
k=−∞

u(kT )pku(nT − kT )

= · · ·+

k=−1︷ ︸︸ ︷
u(−T )p−1u(nT + T ) +

k=0︷ ︸︸ ︷
u(0)p0u(nT ) +

k=1︷ ︸︸ ︷
u(T )p1u(nT − T )

+ · · ·+
k=n︷ ︸︸ ︷

u(nT )pnu(0) +

k=n+1︷ ︸︸ ︷
u(nT + T )pn+1u(−T ) + · · ·

For n ≥ 0, we obtain

y(nT ) = 1 + p1 + p2 + · · ·+ pn = 1 +
n∑

n=1

pn =
1− p(n+1)

1− p

since this is a geometric series with a common ratio p.
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Example Cont’d

· · ·
For n < 0, y(nT ) = 0.

For n ≥ 0,

y(nT ) =
1− p(n+1)

1− p

Therefore, the response can be expressed in closed form as

y(nT ) = u(nT )
1− p(n+1)

1− p
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Example

y(nT ) = Ru(nT ) = u(nT )
1− p(n+1)

1− p

and is initially relaxed (i.e., y(nT ) = 0 for n < 0).

Find the response produced by the excitation

x(nT ) =

{
1 for 0 ≤ n ≤ 4

0 otherwise
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Example Cont’d

Solution We observe that

x(nT ) =

{
1 for 0 ≤ n ≤ 4

0 otherwise
= u(nT )− u(nT − 5T )

and so

y(nT ) = Rx(nT ) = Ru(nT )−Ru(nT − 5T )

Since

y(nT ) = Ru(nT ) = u(nT )
1− p(n+1)

1− p

we get

y(nT ) = u(nT )
1− p(n+1)

1− p
− u(nT − 5T )

1− p(n−4)

1− p
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Example

An initially relaxed causal nonrecursive system was tested with an
input

x(nT ) =

{
0 for n < 0

n for n ≥ 0

and found to have the response given by the following table:

n 0 1 2 3 4 5 6 7

y(nT ) 0 1 4 10 20 30 40 50

(a) Find the impulse response of the system for values of n over
the range 0 ≤ n ≤ 5.

(b) Using the result in part (a), find the unit-step response for
0 ≤ n ≤ 5.
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Example Cont’d

Solution (a) Since the system is causal and x(nT ) = 0 for n < 0, the
convolution summation assumes the form

y(nT ) = Rx(nT ) =
n∑

k=0

x(kT )h(nT − kT )

= x(0)h(nT ) + x(T )h(nT − T ) + · · ·+ h(0)x(nT )

Evaluating y(nT ) for n = 1, 2, . . ., we get

y(T ) = x(0)h(T ) + x(T )h(0) = 0 · h(T ) + 1 · h(0) = 1 or h(0) = 1

y(2T ) = x(0)h(2T ) + x(T )h(T ) + x(2T )h(0)

= 0 · h(2T ) + 1 · h(T ) + 2 · h(0)

= 0 + h(T ) + 2 = 4 or h(T ) = 2

y(3T ) = x(0)h(3T ) + x(T )h(2T ) + x(2T )h(T ) + x(3T )h(0)

= 0 · h(3T ) + 1 · h(2T ) + 2 · h(T ) + 3 · h(0)

= h(2T ) + 2 · 2 + 3 · 1 = 10 or h(2T ) = 3
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Example Cont’d

y(4T ) = x(0)h(4T ) + x(T )h(3T ) + x(2T )h(2T ) + x(3T )h(T )

+x(4T )h(0)

= 0 · h(4T ) + 1 · h(3T ) + 2 · h(2T ) + 3 · h(T ) + 4 · h(0)

= h(3T ) + 2 · 3 + 3 · 2 + 4 · 1 = 20 or h(3T ) = 4

y(5T ) = x(0)h(5T ) + x(T )h(4T ) + x(2T )h(3T ) + x(3T )h(2T )

+ x(4T )h(T ) + x(5T )h(0)

= 0 · h(5T ) + 1 · h(4T ) + 2 · h(3T ) + 3 · h(2T ) + 4 · h(T ) + 5 · h(0)

= 0 + h(4T ) + 2 · 4 + 3 · 3 + 4 · 2 + 5 · 1 = 30 or h(4T ) = 0

y(6T ) = x(0)h(6T ) + x(T )h(5T ) + x(2T )h(4T ) + x(3T )h(3T )

+ x(4T )h(2T ) + x(5T )h(T ) + x(6T )h(0)

= 0 · h(6T ) + 1 · h(5T ) + 2 · h(4T ) + 3 · h(3T ) + 4 · h(2T )

+5 · h(T ) + 6 · h(0)

= h(5T ) + 2 · 0 + 3 · 4 + 4 · 3 + 5 · 2 + 6 · 1
= 40 or h(5T ) = 0
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Example Cont’d

Summarizing the results so far, we have

h(0) = 1 h(T ) = 2 h(2T ) = 3

h(3T ) = 4 h(4T ) = 0 h(5T ) = 0
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Example Cont’d

(b) Using the convolution summation again, we obtain the
unit-step response as follows:

y(nT ) = Rx(nT ) =
n∑

k=0

u(kT )h(nT − kT ) =
n∑

k=0

h(nT − kT )

Hence

y(0) = h(0) = 1

y(T ) = h(T ) + h(0) = 2 + 1 = 3

y(2T ) = h(2T ) + h(T ) + h(0) = 3 + 2 + 1 = 6

y(3T ) = h(3T ) + h(2T ) + h(T ) + h(0) = 10

y(4T ) = h(4T ) + h(3T ) + h(2T ) + h(T ) + h(0) = 15

y(5T ) = h(5T ) + h(4T ) + h(3T ) + h(2T ) + h(T ) + h(0) = 21
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Alternative Classification of Discrete-Time Systems

Discrete-time systems can also be classified on the basis of the
duration of the impulse response as

– finite-duration impulse response (FIR) systems

– infinite-duration impulse response (IIR) systems
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Alternative Classification Cont’d

N If the impulse response of a discrete-time system is of finite
duration such that h(nT ) = 0 for n > N, then the convolution
summation gives

y(nT ) =
N∑

k=0

h(kT )x(nT − kT )

N This equation is of the same form as the difference equation
of a nonrecursive system, i.e.,

y(nT ) =
N∑
i=0

aix(nT − iT )

with
h(0) = a0, h(T ) = a1, . . . , h(NT ) = aN
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Alternative Classification Cont’d

Thus we conclude that

N the impulse response of a nonrecursive system is always of
finite duration, and

N given an impulse response of finite duration, a nonrecursive
system can be obtained.
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Alternative Classification Cont’d
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Alternative Classification Cont’d

N An impulse response of infinite duration could be achieved
with a nonrecursive system of infinite order or with a recursive
system.

N Since infinite-order systems are not feasible, an
infinite-duration impulse response can only be achieved with a
recursive system.

N To confuse the issue somewhat, it is possible to construct a
recursive system that has a finite-duration impulse response!
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An FIR Recursive System

N To illustrate that an FIR system can be represented by a
recursive equation, or by a network with feedback, consider an
FIR system represented by the equation

y(nT ) = x(nT ) + 3x(nT − T )

N If we premultiply both sides of the equation by the operator
(1 + 4E−1), we get

(1 + 4E−1)y(nT ) = (1 + 4E−1)[x(nT ) + 3x(nT − T )]

N After simplification, we have

y(nT ) + 4y(nT − T ) = x(nT ) + 3x(nT − T )

+4x(nT − T ) + 12x(nT − 2T )
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An FIR Recursive System Cont’d

· · ·
y(nT ) + 4y(nT − T ) = x(nT ) + 3x(nT − T )

+4x(nT − T ) + 12x(nT − 2T )

N Thus the FIR system can be represented by the recursive
equation

y(nT ) = x(nT ) + 7x(nT −T ) + 12x(nT −2T )−4y(nT −T )

N Evidently, the manipulation has actually increased the order of
the difference equation and, therefore, no obvious advantage
is gained by converting an FIR system into a recursive one.

N For most practical purposes nonrecursive systems are FIR
systems and recursive systems are IIR systems.
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Alternative Classification Cont’d

Nonrecursive

Recursive

FIR

IIR

Possible but 

unnecessary

Impossible

Note: An IIR system cannot be a nonrecursive system and
vice-versa. However, a recursive system can be constructed that is
also an FIR system but such a system would serve no useful
purpose.
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Stability

N A discrete-time system is said to be stable if and only if any
bounded excitation results in a bounded response, i.e.,

if |x(nT )| <∞ then |y(nT )| <∞

N For a linear and time-invariant system, the convolution
summation gives

y(nT ) =
∞∑

k=−∞
h(kT )x(nT − kT )

N Hence

|y(nT )| =

∣∣∣∣∣
∞∑

k=−∞
h(kT )x(nT − kT )

∣∣∣∣∣ ≤
∞∑

k=−∞
|h(kT )·x(nT−kT )|
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Stability Cont’d

· · ·
|y(nT )| =

∣∣∣∣∣
∞∑

k=−∞

h(kT )x(nT − kT )

∣∣∣∣∣ ≤
∞∑

k=−∞

|h(kT ) · x(nT − kT )|

N For example,∣∣∣∣∑ 2 · 3 + (−1) · 4 + 2 · (−2) + (−3) · (−3)

∣∣∣∣ = 7

≤
∑
|2 · 3|+ |(−1) · 4|+ |2 · (−2)|+ |(−3) · (−3)| = 23

N

If |x(nT )| ≤ P <∞ for all n

we have |y(nT )| ≤ P
∞∑

k=−∞

|h(kT )|
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Stability Cont’d
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Stability Cont’d

· · ·
|y(nT )| ≤ P

∞∑
k=−∞

|h(kT )|

N Clearly, if
∞∑

k=−∞
|h(kT )| <∞ (B)

then |y(nT )| <∞ for all n

N Therefore, Eq. (B) constitutes a sufficient condition for
stability.
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Stability Cont’d

· · ·
|y(nT )| ≤ P

∞∑
k=−∞

|h(kT )|

N Clearly, if
∞∑

k=−∞
|h(kT )| <∞ (B)

then |y(nT )| <∞ for all n

N Therefore, Eq. (B) constitutes a sufficient condition for
stability.
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Stability Cont’d

N A discrete-time system can be classified as stable if and only if its
response is bounded for all possible bounded excitations.

N Let us consider a bounded excitation of the form

x(nT − kT ) =

{
P if h(kT ) ≥ 0

−P if h(kT ) < 0

where P is a positive constant.

N From the convolution summation, we get

|y(nT )| =

∣∣∣∣∣
∞∑

k=−∞

x(nT − kT )h(kT )

∣∣∣∣∣
N Hence

|y(nT )| =
∞∑

k=−∞

P · |h(kT )| = P
∞∑

k=−∞

|h(kT )|
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Stability Cont’d
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Stability Cont’d

N A discrete-time system can be classified as stable if and only if its
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Stability Cont’d

· · ·

|y(nT )| = P
∞∑

k=−∞
|h(kT )|

N Evidently, at least for the type of signal under consideration,
the response will be bounded if and only if

∞∑
k=−∞

|h(kT )| <∞

which implies that this condition is also a necessary condition
for stability.
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Stability Cont’d

N Summarizing, the condition

∞∑
k=−∞

|h(kT )| <∞

is both a necessary and sufficient condition for stability.

N Note: In nonrecursive systems, the impulse response is both
finite in value and also of finite duration and hence the above
condition is always satisfied, i.e., nonrecursive systems are
always stable.
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Example

A first-order system is characterized by the equation

y(nT ) = x(nT ) + py(nT − T )

has an impulse response

h(nT ) = u(nT )pn

Check the stability of the system.

Solution We can write
∞∑

k=−∞
|h(kT )| = 1 + |p|+ · · ·+ |pk |+ · · ·

This is a geometric series and has a sum

∞∑
k=−∞

|h(kT )| = lim
n→∞

1− |p|(n+1)

1− |p|
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Example Cont’d

If p > 1,
∞∑

k=−∞
|h(kT )| = lim

n→∞

1− |p|(n+1)

1− |p|
→ ∞

and if p = 1,

∞∑
k=−∞

|h(kT )| = 1 + 1 + 1 + · · · =∞

On the other hand, if p < 1,

∞∑
k=−∞

|h(kT )| = lim
n→∞

1− |p|(n+1)

1− |p|
→ 1

1− |p|
= K <∞

where K is a positive constant. Therefore, the system is stable if
and only if

|p| < 1
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Example

A discrete-time system has an impulse response

h(nT ) = u(nT )e0.1nT sin
nπ

6

Check the stability of the system.

Solution We can write

∞∑
k=0

|h(nT )| =
∞∑
k=0

∣∣∣∣u(kT )e0.1kT sin
kπ

6

∣∣∣∣
=

∞∑
k=3,9,15,...

∣∣∣e0.1kT ∣∣∣+
∞∑

k 6=3,9,15,...

∣∣∣∣e0.1kT sin
kπ

6

∣∣∣∣→∞
Therefore, the system is unstable.
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This slide concludes the presentation.

Thank you for your attention.
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