Chapter 3 THE FOURIER SERIES AND TRANSFORM

3.1. Introduction

3.3.1-3.3.3 Review of Fourier Transform3.3.4 Impulse Functions3.3.6 Fourier Transforms of Periodic Signals

Copyright © 2018 Andreas Antoniou Victoria, BC, Canada Email: aantoniou@ieee.org

July 9, 2018

 Digital filters are often used to process discrete-time signals that have been generated by sampling continuous-time signals.

- Digital filters are often used to process discrete-time signals that have been generated by sampling continuous-time signals.
- Frequently digital filters are designed indirectly through the use of analog filters.

- Digital filters are often used to process discrete-time signals that have been generated by sampling continuous-time signals.
- Frequently digital filters are designed indirectly through the use of analog filters.
- In order to understand the basis of these techniques, the spectral relationships among continuous-time, impulse-modulated, and discrete-time signals must be understood.

- Digital filters are often used to process discrete-time signals that have been generated by sampling continuous-time signals.
- Frequently digital filters are designed indirectly through the use of analog filters.
- In order to understand the basis of these techniques, the spectral relationships among continuous-time, impulse-modulated, and discrete-time signals must be understood.
- These relationships are derived by using the Fourier transform, the Fourier series, the z transform, and Poisson's summation formula.

 Impulse-modulated signals comprise sequences of continuous-time impulse functions and to understand their significance, the properties of impulse functions must be understood.

On the other hand, Poisson's summation formula is based on a relationship between the Fourier series and the Fourier transform of periodic signals.

- Impulse-modulated signals comprise sequences of continuous-time impulse functions and to understand their significance, the properties of impulse functions must be understood.
 - On the other hand, Poisson's summation formula is based on a relationship between the Fourier series and the Fourier transform of periodic signals.
- This presentation begins with a review of the Fourier transform.

- Impulse-modulated signals comprise sequences of continuous-time impulse functions and to understand their significance, the properties of impulse functions must be understood.
 - On the other hand, Poisson's summation formula is based on a relationship between the Fourier series and the Fourier transform of periodic signals.
- This presentation begins with a review of the Fourier transform.
- Then impulse functions are defined and their properties are examined.

- Impulse-modulated signals comprise sequences of continuous-time impulse functions and to understand their significance, the properties of impulse functions must be understood.
 - On the other hand, Poisson's summation formula is based on a relationship between the Fourier series and the Fourier transform of periodic signals.
- This presentation begins with a review of the Fourier transform.
- Then impulse functions are defined and their properties are examined.
- Subsequently, the application of the Fourier transform to impulse functions and periodic signals is investigated.

• The Fourier transform of a continuous-time signal x(t) is defined as

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$
 (A)

• The Fourier transform of a continuous-time signal x(t) is defined as

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$
 (A)

• In general, $X(j\omega)$ is complex and can be written as

$$X(j\omega) = A(\omega)e^{j\phi(\omega)}$$

where

$$A(\omega) = |X(j\omega)|$$
 and $\phi(\omega) = \arg X(j\omega)$

• The Fourier transform of a continuous-time signal x(t) is defined as

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$
 (A)

• In general, $X(j\omega)$ is complex and can be written as

$$X(j\omega) = A(\omega)e^{j\phi(\omega)}$$

where

$$A(\omega) = |X(j\omega)|$$
 and $\phi(\omega) = \arg X(j\omega)$

• Functions $A(\omega)$ and $\phi(\omega)$ are the amplitude spectrum and phase spectrum of the signal, respectively.

• The Fourier transform of a continuous-time signal x(t) is defined as

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$
 (A)

• In general, $X(j\omega)$ is complex and can be written as

$$X(j\omega) = A(\omega)e^{j\phi(\omega)}$$

where

$$A(\omega) = |X(j\omega)|$$
 and $\phi(\omega) = \arg X(j\omega)$

- Functions $A(\omega)$ and $\phi(\omega)$ are the amplitude spectrum and phase spectrum of the signal, respectively.
- Together, the amplitude and phase spectrums constitute the *frequency spectrum*.

Review of Fourier Transform Cont'd

• • •

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$
 (A)

• Function x(t) is the *inverse Fourier transform* of $X(j\omega)$ and is given by

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
 (B)

Review of Fourier Transform Cont'd

• • •

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$
 (A)

• Function x(t) is the *inverse Fourier transform* of $X(j\omega)$ and is given by

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
 (B)

Eqs. (A) and (B) can be written in operator format as

$$X(j\omega) = \mathcal{F}x(t)$$
 and $x(t) = \mathcal{F}^{-1}X(j\omega)$

respectively.

Review of Fourier Transform Cont'd

• • •

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$
 (A)

• Function x(t) is the *inverse Fourier transform* of $X(j\omega)$ and is given by

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
 (B)

Eqs. (A) and (B) can be written in operator format as

$$X(j\omega) = \mathcal{F}x(t)$$
 and $x(t) = \mathcal{F}^{-1}X(j\omega)$

respectively.

An alternative shorthand notation is

$$x(t) \leftrightarrow X(j\omega)$$

Convergence Theorem

The convergence theorem of the Fourier transform states that if

$$\lim_{T\to\infty}\int_{-T}^{T}|x(t)|\,dt<\infty$$

then the Fourier transform of x(t), $X(j\omega)$, exists and its inverse can be obtained by using the equation

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

Convergence Theorem

• The convergence theorem of the Fourier transform states that if

$$\lim_{T\to\infty}\int_{-T}^{T}|x(t)|\,dt<\infty$$

then the Fourier transform of x(t), $X(j\omega)$, exists and its inverse can be obtained by using the equation

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

 Many signals that are of considerable interest in practice violate the above condition, for example, impulse functions, impulse-modulated signals, and periodic signals.

Convergence Theorem

• The convergence theorem of the Fourier transform states that if

$$\lim_{T\to\infty}\int_{-T}^{T}|x(t)|\,dt<\infty$$

then the Fourier transform of x(t), $X(j\omega)$, exists and its inverse can be obtained by using the equation

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

- Many signals that are of considerable interest in practice violate the above condition, for example, impulse functions, impulse-modulated signals, and periodic signals.
- However, convergence problems can be circumvented by paying particular attention to the definition of impulse functions.

Impulse Functions

The unit impulse function has been defined in the past as

$$\delta(t) = \lim_{ au o 0} ar{p}_{ au}(t) = \lim_{ au o 0} egin{cases} rac{1}{ au} & ext{for } |t| \leq au/2 \ 0 & ext{otherwise} \end{cases}$$

Impulse Functions

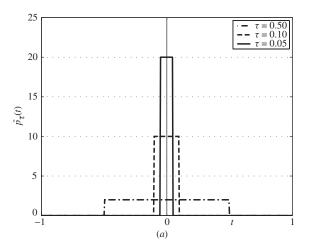
The unit impulse function has been defined in the past as

$$\delta(t) = \lim_{ au o 0} ar{p}_{ au}(t) = \lim_{ au o 0} egin{cases} rac{1}{ au} & ext{for } |t| \leq au/2 \ 0 & ext{otherwise} \end{cases}$$

• Obviously, this is an infinitesimally thin, infinitely tall pulse whose area is equal to unity for any finite value of τ .

Impulse Functions Cont'd

Pulse function $\bar{p}_{\tau}(t)$ for three values of τ :



Mathematical Problem

 The Fourier transform of the unit impulse function as defined in the past should be given by the integral

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$
$$= \int_{-\infty}^{\infty} \lim_{\tau \to 0} [\bar{p}_{\tau}(t)]e^{-j\omega t} dt$$

where

$$ar{p}_{ au}(t) = egin{cases} rac{1}{ au} & ext{for } |t| \leq au/2 \ 0 & ext{otherwise} \end{cases}$$

Mathematical Problem

 The Fourier transform of the unit impulse function as defined in the past should be given by the integral

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$
$$= \int_{-\infty}^{\infty} \lim_{\tau \to 0} [\bar{p}_{\tau}(t)]e^{-j\omega t} dt$$

where

$$ar{p}_{ au}(t) = egin{cases} rac{1}{ au} & ext{for } |t| \leq au/2 \ 0 & ext{otherwise} \end{cases}$$

• If we now attempt to evaluate the function $\bar{p}_{\tau}(t)e^{-j\omega t}$ at $\tau=0$, we find that it becomes infinite and, therefore, the above integral cannot be evaluated.

We can write

$$\mathcal{F}\lim_{ au o 0}ar{p}_{ au}(t) = \int_{-\infty}^{\infty}\lim_{ au o 0}[ar{p}_{ au}(t)]e^{-j\omega t}\,dt \ pprox \int_{- au/2}^{ au/2}\lim_{ au o 0}\left[rac{1}{ au}
ight]\,dt$$

We can write

$$\mathcal{F}\lim_{ au o 0}ar{p}_{ au}(t) = \int_{-\infty}^{\infty}\lim_{ au o 0}[ar{p}_{ au}(t)]e^{-j\omega t}\,dt \ pprox \int_{- au/2}^{ au/2}\lim_{ au o 0}\left[rac{1}{ au}
ight]\,dt$$

• Since the area of the pulse function $\bar{p}_{\tau}(t)$ is unity for any finite value of τ , we might be tempted to assume that the area is equal to unity even for $\tau=0$, i.e.,

$$\mathcal{F}\lim_{ au o 0}ar{p}_{ au}(t)=1$$

• The Fourier transform of $\bar{p}_{\tau}(t)$ for a finite τ is given by

$$\mathcal{F}ar{p}_{ au}(t)=rac{1}{ au}\mathcal{F}p_{ au}(t)=rac{2\sin{\omega au}/2}{\omega au}$$

• The Fourier transform of $\bar{p}_{\tau}(t)$ for a finite τ is given by

$$\mathcal{F}ar{p}_{ au}(t)=rac{1}{ au}\mathcal{F}p_{ au}(t)=rac{2\sin{\omega au}/2}{\omega au}$$

 Obviously, this is well defined and, interestingly, it has the limit

$$\lim_{ au o 0} \mathcal{F}ar{p}_{ au}(t) = 1$$

• The Fourier transform of $\bar{p}_{\tau}(t)$ for a finite au is given by

$$\mathcal{F}ar{p}_{ au}(t) = rac{1}{ au}\mathcal{F}p_{ au}(t) = rac{2\sin{\omega au}/2}{\omega au}$$

 Obviously, this is well defined and, interestingly, it has the limit

$$\lim_{ au o 0}\mathcal{F}ar{p}_{ au}(t)=1$$

So far so good!

• If we now attempt to find the inverse Fourier transform of 1, we run into certain mathematical difficulties.

- If we now attempt to find the inverse Fourier transform of 1, we run into certain mathematical difficulties.
- From the definition of the inverse Fourier transform, we have

$$\mathcal{F}^{-1}1 = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega t} d\omega$$
$$= \frac{1}{2\pi} \left[\int_{-\infty}^{\infty} \cos \omega t \, d\omega + j \int_{-\infty}^{\infty} \sin \omega t \, d\omega \right]$$

- If we now attempt to find the inverse Fourier transform of 1, we run into certain mathematical difficulties.
- From the definition of the inverse Fourier transform, we have

$$\mathcal{F}^{-1}1 = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega t} d\omega$$
$$= \frac{1}{2\pi} \left[\int_{-\infty}^{\infty} \cos \omega t \, d\omega + j \int_{-\infty}^{\infty} \sin \omega t \, d\omega \right]$$

 However, mathematicians will tell us that these integrals do not converge or do not exist!

• Summarizing, by cheating a little bit we can get a more or less meaningful Fourier transform for the unit impulse function.

- Summarizing, by cheating a little bit we can get a more or less meaningful Fourier transform for the unit impulse function.
- Unfortunately, it is impossible to recover the impulse function from its Fourier transform by applying the inverse Fourier transform.

• The impulse-function problem can be circumvented in two ways, a *practical* and a *theoretical* one:

- The impulse-function problem can be circumvented in two ways, a *practical* and a *theoretical* one:
 - The practical approach is easy to understand and apply but it lacks rigor.

Mathematical Problem Cont'd

- The impulse-function problem can be circumvented in two ways, a *practical* and a *theoretical* one:
 - The practical approach is easy to understand and apply but it lacks rigor.
 - The theoretical approach is rigorous but it is rather abstract and more difficult to understand or apply in practical situations.

Practical Approach to Impulse Functions

• In the practical approach to impulse functions, a function $\gamma(t)$ is said to be a unit impulse function if, for any continuous function x(t) over the range $-\epsilon < t < \epsilon$, the following relation is satisfied:

$$\int_{-\infty}^{\infty} \gamma(t)x(t) dt \simeq x(0)$$
 (C)

Practical Approach to Impulse Functions

In the practical approach to impulse functions, a function $\gamma(t)$ is said to be a unit impulse function if, for any continuous function x(t) over the range $-\epsilon < t < \epsilon$, the following relation is satisfied:

$$\int_{-\infty}^{\infty} \gamma(t)x(t) dt \simeq x(0)$$
 (C)

The special symbol

is used to signify that the two sides can be made to approach one another to any desired degree of precision but cannot be made exactly equal.

Practical Approach to Impulse Functions

• In the practical approach to impulse functions, a function $\gamma(t)$ is said to be a unit impulse function if, for any continuous function x(t) over the range $-\epsilon < t < \epsilon$, the following relation is satisfied:

$$\int_{-\infty}^{\infty} \gamma(t)x(t) dt \simeq x(0)$$
 (C)

- The special symbol

 is used to signify that the two sides can be made to approach one another to any desired degree of precision but cannot be made exactly equal.
- Now consider the pulse function

$$\lim_{ au o\epsilon}ar{p}_ au(t)=ar{p}_\epsilon(t)=egin{cases} rac{1}{\epsilon} & ext{for } |t|\leq \epsilon/2\ 0 & ext{otherwise} \end{cases}$$

where ϵ is a small but finite constant.

. . .

$$\int_{-\infty}^{\infty} \gamma(t) x(t) dt \simeq x(0)$$
 (C)

• If we let

$$\gamma(t) = \lim_{\tau \to \epsilon} \bar{p}_{\tau}(t)$$

in the left-hand side of Eq. (C), we obtain

$$\int_{-\infty}^{\infty} \lim_{\tau \to \epsilon} [\bar{p}_{\tau}(t)] x(t) dt = \int_{-\epsilon/2}^{\epsilon/2} \frac{1}{\epsilon} x(t) dt$$
$$= \frac{1}{\epsilon} x(0) \int_{-\epsilon/2}^{\epsilon/2} dt = x(0)$$

. . .

$$\int_{-\infty}^{\infty} \gamma(t) x(t) dt = x(0)$$
 (C)

If we let

$$\gamma(t) = \lim_{\tau \to \epsilon} \bar{p}_{\tau}(t)$$

in the left-hand side of Eq. (C), we obtain

$$\int_{-\infty}^{\infty} \lim_{\tau \to \epsilon} [\bar{p}_{\tau}(t)] x(t) dt = \int_{-\epsilon/2}^{\epsilon/2} \frac{1}{\epsilon} x(t) dt$$

$$= \frac{1}{\epsilon} x(0) \int_{-\epsilon/2}^{\epsilon/2} dt = x(0)$$

• Thus we conclude that the very thin pulse function $\lim_{\tau \to \epsilon} \bar{p}_{\tau}(t)$ behaves as an impulse function and, therefore, we can write

$$\delta(t) = \lim_{ au o \epsilon} ar{p}_{ au}(t)$$

. . .

$$\delta(t) = \lim_{ au o \epsilon} ar{p}_{ au}(t)$$

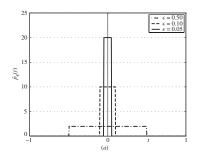
 Now if we apply the Fourier transform to the impulse function as defined, we get

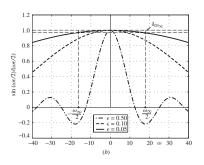
$$\lim_{ au o\epsilon}ar{p}_{ au}(t)\leftrightarrow\lim_{ au o\epsilon}rac{2\sin\omega au/2}{\omega au}$$

. . .

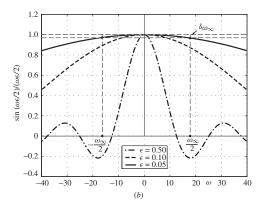
$$\lim_{ au o \epsilon} ar{p}_{ au}(t) \leftrightarrow \lim_{ au o \epsilon} rac{2\sin \omega au/2}{\omega au}$$

• As τ is reduced, the pulse function at the left tends to become thinner and taller whereas the sinc function at the right tends to be flattened out.





• For some small but finite ϵ , the sinc function will be equal to unity to within an error $\delta_{\omega_{\infty}}$ over some frequency range $-\omega_{\infty}/2 < \omega < \omega_{\infty}/2$.



Therefore, we can write

$$\delta(t) = \lim_{ au o \epsilon} ar{p}_{ au}(t) \leftrightarrow \lim_{ au o \epsilon} rac{2\sin\omega au/2}{\omega au} = i(\omega)$$

where $i(\omega)$ may be referred to as a *frequency-domain unity* function.

- Summarizing,
 - the Fourier transform of a time-domain impulse function is a frequency-domain unity function, and
 - the inverse Fourier transform of a frequency-domain unity function is a time-domain impulse function,

- Summarizing,
 - the Fourier transform of a time-domain impulse function is a frequency-domain unity function, and
 - the inverse Fourier transform of a frequency-domain unity function is a time-domain impulse function,

i.e.,
$$\delta(t) \leftrightarrow i(\omega)$$

- Summarizing,
 - the Fourier transform of a time-domain impulse function is a frequency-domain unity function, and
 - the inverse Fourier transform of a frequency-domain unity function is a time-domain impulse function,

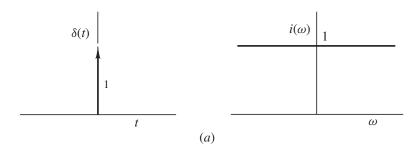
i.e.,
$$\delta(t) \leftrightarrow i(\omega)$$

• Since $i(\omega) = 1$ for the frequency range of interest, we can write

$$\delta(t) \leftrightsquigarrow 1$$

where the wavy double arrow \iff signifies that the relation is approximate with the understanding that it can be made as exact as desired by making ϵ sufficiently small.

The impulse and unity functions can be represented by the idealized graphs:



Properties of Impulse Functions

• Assuming that x(t) is a continuous function of t over the range $-\epsilon < t < \epsilon$, the following relations apply:

(a)
$$\int_{-\infty}^{\infty} \delta(t-\tau)x(t) dt = \int_{-\infty}^{\infty} \delta(-t+\tau)x(t) dt = x(\tau)$$

(b)
$$\delta(t-\tau)x(t) = \delta(-t+\tau)x(t) = \delta(t-\tau)x(\tau)$$

(c)
$$\delta(t)x(t) = \delta(-t)x(t) \simeq \delta(t)x(0)$$

(See textbook for proofs.)

Frequency-Domain Impulse Functions

Given a transform pair

$$\delta(t) \leftrightarrow i(\omega)$$

where

$$\delta(t) = \lim_{ au o \epsilon} ar{p}_{ au}(t)$$
 $i(\omega) = \lim_{ au o \epsilon} rac{2\sin \omega au/2}{\omega au} \simeq 1 \quad ext{for} \quad |\omega| < \omega_{\infty}$

the corresponding transform pair

$$i(t) \leftrightarrow 2\pi\delta(\omega)$$

where

$$i(t) = rac{2\sin t\epsilon/2}{t\epsilon} \simeq 1 \quad ext{for} \ \ |t| < t_{\infty} \ \delta(\omega) = ar{p}_{\epsilon}(\omega)$$

can be generated by applying the *symmetry theorem* of the Fourier transform.

Frequency-Domain Impulse Functions Cont'd

. . .

$$i(t) \leftrightarrow 2\pi\delta(\omega)$$

• Function i(t) is a time-domain unity function whereas $\delta(\omega)$ is a frequency-domain unit impulse function.

Frequency-Domain Impulse Functions Cont'd

. . .

$$i(t) \leftrightarrow 2\pi\delta(\omega)$$

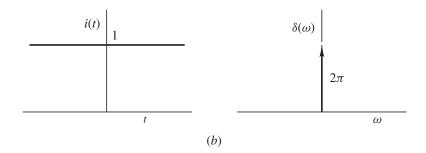
- Function i(t) is a time-domain unity function whereas $\delta(\omega)$ is a frequency-domain unit impulse function.
- Since i(t) = 1, we have

$$1 \leftrightarrow 2\pi\delta(\omega)$$

Frequency-Domain Impulse Functions Cont'd

. . .

This transform pair can be represented by the idealized graphs shown.



Properties of Frequency-Domain Impulse Functions

• Assuming that $X(j\omega)$ is a continuous function of ω over the range $-\epsilon < \omega < \epsilon$, the following relations apply:

(a)
$$\int_{-\infty}^{\infty} \delta(\omega - \varpi) X(j\omega) dt$$
$$= \int_{-\infty}^{\infty} \delta(-\omega + \varpi) X(j\omega) dt \simeq X(j\varpi)$$

(b)
$$\delta(\omega - \varpi)X(j\omega) = \delta(-\omega + \varpi)X(j\omega) = \delta(t - \varpi)X(j\varpi)$$

(c)
$$\delta(\omega)X(j\omega) = \delta(-\omega)X(j\omega) \simeq \delta(t)X(0)$$

(See textbook for details.)

Fourier Transforms of Exponentials

Since

$$\delta(t) \leftrightarrow i(\omega)$$

the application of the time-shifting theorem gives

$$\delta(t-t_0) \leftrightarrow i(\omega)e^{-j\omega t_0}$$

and since $i(\omega) \simeq 1$, we get

$$\delta(t-t_0) \iff e^{-j\omega t_0}$$

Fourier Transforms of Exponentials

Since

$$\delta(t) \leftrightarrow i(\omega)$$

the application of the time-shifting theorem gives

$$\delta(t-t_0) \leftrightarrow i(\omega)e^{-j\omega t_0}$$

and since $i(\omega) \simeq 1$, we get

$$\delta(t-t_0) \iff e^{-j\omega t_0}$$

 Now applying the frequency-shifting theorem to the frequency-domain impulse function, we obtain

$$i(t)e^{j\omega_0t}\leftrightarrow 2\pi\delta(\omega-\omega_0)$$

and since i(t) = 1, we get

$$e^{j\omega_0 t} \iff 2\pi\delta(\omega-\omega_0)$$

Fourier Transforms of Sinusoidal Signals

We know that

$$i(t)e^{j\omega_0t}\leftrightarrow 2\pi\delta(\omega-\omega_0)$$

and

$$i(t)e^{-j\omega_0t}\leftrightarrow 2\pi\delta(\omega+\omega_0)$$

Fourier Transforms of Sinusoidal Signals

We know that

$$i(t)e^{j\omega_0t}\leftrightarrow 2\pi\delta(\omega-\omega_0)$$

and

$$i(t)e^{-j\omega_0t}\leftrightarrow 2\pi\delta(\omega+\omega_0)$$

If we add the two equations, we get

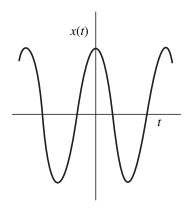
$$i(t)(e^{j\omega_0t}+e^{-j\omega_0t})=2i(t)\cdot\cos\omega_0t\leftrightarrow 2\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$$
 and since $i(t)\simeq 1$, we have

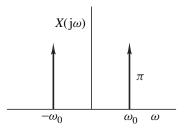
$$\cos \omega_0 t \iff \pi[\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$$

Fourier Transforms of Sinusoidal Signals Cont'd

. . .

$$\cos \omega_0 t \iff \pi[\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$$





Fourier Transforms of Sinusoidal Signals Cont'd

As before,

$$i(t)e^{j\omega_0t}\leftrightarrow 2\pi\delta(\omega-\omega_0)$$

and

$$i(t)e^{-j\omega_0t}\leftrightarrow 2\pi\delta(\omega+\omega_0)$$

Fourier Transforms of Sinusoidal Signals Cont'd

• As before,

$$i(t)e^{j\omega_0t}\leftrightarrow 2\pi\delta(\omega-\omega_0)$$

and

$$i(t)e^{-j\omega_0t}\leftrightarrow 2\pi\delta(\omega+\omega_0)$$

If we subtract the top equation from the bottom one, we have

$$i(t)(e^{-j\omega_0 t} - e^{j\omega_0 t}) = -2ji(t) \cdot \sin \omega_0 t \leftrightarrow 2\pi [\delta(\omega + \omega_0) - \delta(\omega - \omega_0)]$$

and since i(t) = 1, we can write

$$\sin \omega_0 t \iff j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$$

Fourier Transforms of Periodic Signals

An arbitrary periodic signal can be represented by the Fourier series

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} X_k e^{-jk\omega_0 t}$$

Fourier Transforms of Periodic Signals

• An arbitrary periodic signal can be represented by the Fourier series

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} X_k e^{-jk\omega_0 t}$$

Hence

$$\mathcal{F}\tilde{x}(t) = \sum_{k=-\infty}^{\infty} 2\pi X_k \mathcal{F} e^{-jk\omega_0 t} \simeq \sum_{k=-\infty}^{\infty} 2\pi X_k \delta(\omega - k\omega_0)$$

$$\tilde{x}(t) \iff 2\pi \sum_{k=-\infty}^{\infty} X_k \delta(\omega - k\omega_0)$$

Fourier Transforms of Periodic Signals Cont'd

• • •

$$\tilde{x}(t) \iff 2\pi \sum_{k=-\infty}^{\infty} X_k \delta(\omega - k\omega_0)$$

• Summarizing, the frequency spectrum of a periodic signal can be represented by an infinite sequence of numbers X_k for $-\infty < k < \infty$, i.e., the Fourier-series coefficients as shown in Chap. 3

Fourier Transforms of Periodic Signals Cont'd

. . .

$$\tilde{x}(t) \iff 2\pi \sum_{k=-\infty}^{\infty} X_k \delta(\omega - k\omega_0)$$

• Summarizing, the frequency spectrum of a periodic signal can be represented by an infinite sequence of numbers X_k for $-\infty < k < \infty$, i.e., the Fourier-series coefficients as shown in Chap. 3

or

Fourier Transforms of Periodic Signals Cont'd

. . .

$$\tilde{x}(t) \iff 2\pi \sum_{k=-\infty}^{\infty} X_k \delta(\omega - k\omega_0)$$

• Summarizing, the frequency spectrum of a periodic signal can be represented by an infinite sequence of numbers X_k for $-\infty < k < \infty$, i.e., the Fourier-series coefficients as shown in Chap. 3

or

• by an infinite sequence of frequency-domain impulse functions of strength $2\pi X_k$ for $-\infty < k < \infty$ as shown in the previous slide.

The Fourier transform pairs generated through the practical approach are approximate since the pulse width ϵ cannot be reduced to absolute zero.

- The Fourier transform pairs generated through the practical approach are approximate since the pulse width ε cannot be reduced to absolute zero.
- However, by defining impulse functions in terms of generalized functions, analogous, but exact, Fourier transform pairs can be generated.

- The Fourier transform pairs generated through the practical approach are approximate since the pulse width ε cannot be reduced to absolute zero.
- However, by defining impulse functions in terms of generalized functions, analogous, but exact, Fourier transform pairs can be generated.
- Unfortunately, impulse functions so defined are rather impractical and difficult to implement in a laboratory.

- The Fourier transform pairs generated through the practical approach are approximate since the pulse width ε cannot be reduced to absolute zero.
- However, by defining impulse functions in terms of generalized functions, analogous, but exact, Fourier transform pairs can be generated.
- Unfortunately, impulse functions so defined are rather impractical and difficult to implement in a laboratory.
- See textbook for more details and references on generalized functions.

Summary of Fourier Transforms Derived

x(t)	$X(j\omega)$
$\delta(t)$	1
1	$2\pi\delta(\omega)$
$\delta(t-t_0)$	$e^{-j\omega t_0}$
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$
$\cos \omega_0 t$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$
$\sin \omega_0 t$	$\int j\pi [\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$

This slide concludes the presentation.

Thank you for your attention.