Chapter 4
 THE Z TRANSFORM
 4.1 Introduction 4.2 Definition
 4.3 Convergence Properties 4.4 The Z Transform as a Laurent Series 4.5 Inverse Z Transform 4.6 Theorems and Properties 4.7 Elementary Discrete-Time Signals

Copyright © 2018 Andreas Antoniou
Victoria, BC, Canada
Email: aantoniou@ieee.org

July 9, 2018

Introduction

- The Fourier series and Fourier transform can be used to obtain spectral representations for periodic and nonperiodic continuous-time signals, respectively (see Chap. 2).

Analogous spectral representations can be obtained for discrete-time signals by using the z transform.

Introduction

- The Fourier series and Fourier transform can be used to obtain spectral representations for periodic and nonperiodic continuous-time signals, respectively (see Chap. 2).

Analogous spectral representations can be obtained for discrete-time signals by using the z transform.

- The Fourier transform will convert a real continuous-time signal into a function of complex variable $j \omega$.

Similarly, the z transform will convert a real discrete-time signal into a function of complex variable z.

Introduction Cont'd

- The z transform, like the Fourier transform, comes along with an inverse transform, namely, the inverse z transform.

Consequently, a discrete-time signal can be readily recovered from its z transform.

Introduction Cont'd

- The z transform, like the Fourier transform, comes along with an inverse transform, namely, the inverse z transform.

Consequently, a discrete-time signal can be readily recovered from its z transform.

- The availability of an inverse makes the z transform very useful for the representation of digital filters and discrete-time systems in general.

Introduction Cont'd

- The most basic representation of discrete-time systems is in terms of difference equations (see Chap. 4) but through the use of the z transform, difference equations can be reduced to algebraic equations which are much easier to handle.

Objectives

- Definition of Z Transform
- Convergence Properties
- The Z Transform as a Laurent series
- Inverse Z Transform
- Theorems and Properties
- Elementary Functions
- Examples

The Z Transform

- Consider a bounded discrete-time signal $x(n T)$ that satisfies the conditions
(i) $\quad x(n T)=0$ for $n<-N_{1}$
(ii) $\quad|x(n T)| \leq K_{1} \quad$ for $\quad-N_{1} \leq n<N_{2}$
(iii) $|x(n T)| \leq K_{2} r^{n}$ for $n \geq N_{2}$
where N_{1} and N_{2} are positive integers and r is a positive constant.

The Z Transform Cont'd

(i) $\quad x(n T)=0$ for $n<-N_{1}$
(ii) $\quad|x(n T)| \leq K_{1} \quad$ for $\quad-N_{1} \leq n<N_{2}$
(iii) $|x(n T)| \leq K_{2} r^{n}$ for $n \geq N_{2}$

(a)

The Z Transform Cont'd

The z transform of a discrete-time signal $x(n T)$ is defined as

$$
X(z)=\sum_{n=-\infty}^{\infty} x(n T) z^{-n}
$$

for all z for which $X(z)$ converges.

The Z Transform Cont'd

- Although the z transform of a signal $x(n T)$ is an infinite series, in practice it can be represented in terms of a rational function as

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty} x(n T) z^{-n} \\
& =\frac{N(z)}{D(z)}=\frac{\sum_{i=0}^{M} a_{i} z^{M-i}}{z^{N}+\sum_{i=1}^{N} b_{i} z^{N-i}}=H_{0} \frac{\prod_{i=1}^{M}\left(z-z_{i}\right)}{\prod_{i=1}^{N}\left(z-p_{i}\right)}
\end{aligned}
$$

where z_{i} and p_{i} are the zeros and poles of the z transform and H_{0} is a multiplier constant.

The Z Transform Cont'd

- Although the z transform of a signal $x(n T)$ is an infinite series, in practice it can be represented in terms of a rational function as

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty} x(n T) z^{-n} \\
& =\frac{N(z)}{D(z)}=\frac{\sum_{i=0}^{M} a_{i} z^{M-i}}{z^{N}+\sum_{i=1}^{N} b_{i} z^{N-i}}=H_{0} \frac{\prod_{i=1}^{M}\left(z-z_{i}\right)}{\prod_{i=1}^{N}\left(z-p_{i}\right)}
\end{aligned}
$$

where z_{i} and p_{i} are the zeros and poles of the z transform and H_{0} is a multiplier constant.

- In effect, z transforms can be represented by zero-pole plots.

Example

The following z transform has the zero-pole plot shown.

$$
X(z)=\frac{\left(z^{2}-4\right)}{z\left(z^{2}-1\right)\left(z^{2}+4\right)}=\frac{(z-2)(z+2)}{z(z-1)(z+1)(z-j 2)(z+j 2)}
$$

Theorem 3.1 Absolute Convergence

If
(i) $\quad x(n T)=0$ for $n<-N_{1}$
(ii) $\quad|x(n T)| \leq K_{1}$ for $-N_{1} \leq n<N_{2}$
(iii) $|x(n T)| \leq K_{2} r^{n}$ for $n \geq N_{2}$
where N_{1} and N_{2} are positive constants and r is the smallest positive constant that will satisfy condition (iii), then the z transform of $x(n T)$, i.e.,

$$
X(z)=\sum_{n=-\infty}^{\infty} x(n T) z^{-n}
$$

exists and converges absolutely if and only if

$$
r<|z|<R_{\infty} \text { with } R_{\infty} \rightarrow \infty
$$

Absolute Convergence Cont'd

Absolute Convergence Cont'd

The proofs of the Absolute Convergence Theorem and the theorems that follow can be found in the textbook.

The Z Transform as a Laurent Series

The Laurent series of a function $X(z)$ about point $z=a$ assumes the form

$$
X(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-a)^{-n}
$$

(see Appendix.)

The Z Transform as a Laurent Series

- The Laurent series of a function $X(z)$ about point $z=a$ assumes the form

$$
X(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-a)^{-n}
$$

(see Appendix.)

- The z transform is given by

$$
X(z)=\sum_{n=-\infty}^{\infty} x(n T) z^{-n}
$$

If we compare the above two series for $X(z)$, we conclude that the z transform is a Laurent series of $X(z)$ about the origin, i.e., $a=0$, with

$$
a_{n}=x(n T)
$$

The Z Transform as a Laurent Series Cont'd

- Since the z transform is a specific Laurent series, it follows that it inherits all the properties of the Laurent series, which are stated in the Laurent theorem as detailed in the slides that follow.

Laurent Theorem

(a) If $F(z)$ is an analytic and single-valued function on two concentric circles C_{1} and C_{2} with center a and in the annulus between them, then it can be represented by the Laurent series

$$
F(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-a)^{-n}
$$

where

$$
a_{n}=\frac{1}{2 \pi j} \oint_{\Gamma} F(z)(z-a)^{n-1} d z
$$

The contour of integration Γ is a closed contour in the counterclockwise sense lying in the annulus between circles C_{1} and C_{2} and encircling the inner circle.

Laurent Theorem Cont'd

(a)

Laurent Theorem Cont'd

(b) The Laurent series converges and represents $F(z)$ in the open annulus obtained by continuously increasing the radius of C_{2} and decreasing the radius of C_{1} until each of C_{1} and C_{2} reaches a point where $F(z)$ is singular.

(b)

Laurent Theorem Cont'd

(c) A function $F(z)$ can have several, possibly many, annuli of convergence about a given point $z=a$ and for each one a Laurent series can be obtained.

(c)

Laurent Theorem Cont'd

(d) The Laurent series for a given annulus of convergence is unique.

(c)

Example

The function represented by the zero-pole plot at the left has three unique Laurent series as shown at the right.

(a)

Inverse Z Transform

- The absolute-convergence theorem states that the z transform, $X(z)$, of a discrete-time signal $x(n T)$ satisfying the conditions
(i) $\quad x(n T)=0$ for $n<-N_{1}$
(ii) $\quad|x(n T)| \leq K_{1} \quad$ for $\quad-N_{1} \leq n<N_{2}$
(iii) $\quad|x(n T)| \leq K_{2} r^{n}$ for $n \geq N_{2}$
exists and converges absolutely if and only if

$$
r<|z|<R \quad \text { with } \quad R \rightarrow \infty
$$

Inverse Z Transform Cont'd

- The Laurent theorem states that a function $X(z)$ has as many distinct Laurent series about the origin as there are annuli of convergence.

Inverse Z Transform Cont'd

- The Laurent theorem states that a function $X(z)$ has as many distinct Laurent series about the origin as there are annuli of convergence.
- One of these series converges in the outer annulus (i.e., the largest one) which is defined as

$$
R_{0}<|z|<R \quad \text { with } \quad R \rightarrow \infty
$$

where R_{0} is the radius of a circle passing through the most distant pole of $X(z)$ from the origin.

Inverse Z Transform Cont'd

Summarizing:

- From the absolute convergence theorem, the z transform converges in the annulus

$$
r<|z|<R \quad \text { with } \quad R \rightarrow \infty
$$

Inverse Z Transform Cont'd

Summarizing:

- From the absolute convergence theorem, the z transform converges in the annulus

$$
r<|z|<R \quad \text { with } \quad R \rightarrow \infty
$$

- From the Laurent theorem, there is a unique Laurent series of $X(z)$ that converges in the outer annulus of convergence

$$
R_{0}<|z|<R \quad \text { with } \quad R \rightarrow \infty
$$

Inverse Z Transform Cont'd

Summarizing:

- From the absolute convergence theorem, the z transform converges in the annulus

$$
r<|z|<R \quad \text { with } \quad R \rightarrow \infty
$$

- From the Laurent theorem, there is a unique Laurent series of $X(z)$ that converges in the outer annulus of convergence

$$
R_{0}<|z|<R \quad \text { with } \quad R \rightarrow \infty
$$

- Therefore, the z transform of $x(n T)$ is the unique Laurent series that converges in the outer annulus and, furthermore, $r=R_{0}$.

Inverse Z Transform Cont'd

- We conclude that signal $x(n T)$ can be obtained from its z transform $X(z)$ by finding the coefficients of the Laurent series of $X(z)$ that converges in the outer annulus.

Inverse Z Transform Cont'd

- We conclude that signal $x(n T)$ can be obtained from its z transform $X(z)$ by finding the coefficients of the Laurent series of $X(z)$ that converges in the outer annulus.
- From the Laurent theorem, we have

$$
x(n T)=\frac{1}{2 \pi j} \oint_{\Gamma} X(z) z^{n-1} d z
$$

where contour Γ encloses all the poles of $X(z) z^{n-1}$.

Inverse Z Transform Cont'd

- We conclude that signal $x(n T)$ can be obtained from its z transform $X(z)$ by finding the coefficients of the Laurent series of $X(z)$ that converges in the outer annulus.
- From the Laurent theorem, we have

$$
x(n T)=\frac{1}{2 \pi j} \oint_{\Gamma} X(z) z^{n-1} d z
$$

where contour Γ encloses all the poles of $X(z) z^{n-1}$.

- In DSP, this contour integral is said to be the inverse z transform of $X(z)$.

Notation

- Like the Fourier transform and its inverse, the z transform and its inverse are often represented in terms of operator notation as

$$
X(z)=\mathcal{Z} \times(n T) \quad \text { and } \quad x(n T)=\mathcal{Z}^{-1} X(z)
$$

respectively.

- The general properties of the z transform can be described in terms of a small number of theorems, as detailed in the slides that follow.
- The general properties of the z transform can be described in terms of a small number of theorems, as detailed in the slides that follow.
- In these theorems

$$
\mathcal{Z} \times(n T)=X(z) \quad \mathcal{Z} X_{1}(n T)=X_{1}(z) \quad \mathcal{Z} X_{2}(n T)=X_{2}(z)
$$

and a, b, w, and K represent constants which may be complex.

Theorem 3.3 Linearity

- The z transform of a linear combination of discrete-time signals is given by

$$
\mathcal{Z}\left[a x_{1}(n T)+b x_{2}(n T)\right]=a X_{1}(z)+b X_{2}(z)
$$

- The z transform of a linear combination of discrete-time signals is given by

$$
\mathcal{Z}\left[a x_{1}(n T)+b x_{2}(n T)\right]=a X_{1}(z)+b X_{2}(z)
$$

- Similarly, the inverse z transform of a linear combination of z transforms is given by

$$
\mathcal{Z}^{-1}\left[a X_{1}(z)+b X_{2}(z)\right]=a x_{1}(n T)+b x_{2}(n T)
$$

- For any positive or negative integer m,

$$
\mathcal{Z} \times(n T+m T)=z^{m} X(z)
$$

In effect, multiplying the z transform of a signal by a negative or positive power of z will cause the signal to be delayed or advanced by $m T$ s.

Theorem 3.5 Complex Scale Change

- For an arbitrary real or complex constant w

$$
\mathcal{Z}\left[w^{-n} x(n T)\right]=X(w z)
$$

Evidently, multiplying a discrete-time signal by w^{-n} is equivalent to replacing z by $w z$ in its z transform.

Similarly, multiplying a discrete-time signal by v^{n} is equivalent to replacing z by z / v in its z transform.

- The z transform of an arbitrary signal $n T_{1} x(n T)$ is given by

$$
\mathcal{Z}\left[n T_{1} x(n T)\right]=-T_{1} z \frac{d X(z)}{d z}
$$

Complex differentiation provides a simple way of obtaining the z transform of a discrete-time signal that can be expressed as a product $n T_{1} \times(n T)$.

- The z transform of the real convolution summation of two signals $x_{1}(k T)$ and $x_{2}(n T)$ is given by

$$
\begin{aligned}
\mathcal{Z} \sum_{k=-\infty}^{\infty} x_{1}(k T) x_{2}(n T-k T) & =\mathcal{Z} \sum_{k=-\infty}^{\infty} x_{1}(n T-k T) x_{2}(k T) \\
& =X_{1}(z) X_{2}(z)
\end{aligned}
$$

The real convolution summation is used frequently for the representation of digital filters and discrete-time systems (see Chap. 4).

- The initial value of a signal $x(n T)$ represented by a z transform of the form

$$
X(z)=\frac{N(z)}{D(z)}=\frac{\sum_{i=0}^{M} a_{i} z^{M-i}}{\sum_{i=0}^{N} b_{i} z^{N-i}}
$$

occurs at

$$
K T=(N-M) T
$$

and its value at $n T=K T$ is given by

$$
x(K T)=\lim _{z \rightarrow \infty}\left[z^{K} X(z)\right]
$$

$$
X(z)=\frac{N(z)}{D(z)}=\frac{\sum_{i=0}^{M} a_{i} z^{M-i}}{\sum_{i=0}^{N} b_{i} z^{N-i}}
$$

- Corollary: If the degree of the numerator polynomial, $N(z)$, in a z transform is equal to or less than the degree of the denominator polynomial $D(z)$, then we have

$$
x(n T)=0 \quad \text { for } n<0
$$

i.e., the signal is right-sided.

- The value of $x(n T)$ as $n \rightarrow \infty$ is given by

$$
x(\infty)=\lim _{z \rightarrow 1}[(z-1) X(z)]
$$

The final-value theorem can be used to determine the steady-state response of a discrete-time system.

- If the z transforms of two discrete-time signals $x_{1}(n T)$ and $x_{2}(n T)$ are available, then the z transform of their product, $X_{3}(z)$, can be obtained as

$$
\begin{aligned}
X_{3}(z)=\mathcal{Z}\left[x_{1}(n T) x_{2}(n T)\right] & =\frac{1}{2 \pi j} \oint_{\Gamma_{1}} X_{1}(v) X_{2}\left(\frac{z}{v}\right) v^{-1} d v \\
& =\frac{1}{2 \pi j} \oint_{\Gamma_{2}} X_{1}\left(\frac{z}{v}\right) X_{2}(v) v^{-1} d v
\end{aligned}
$$

where $\Gamma_{1}\left(\operatorname{or} \Gamma_{2}\right)$ is a contour in the common region of convergence of $X_{1}(v)$ and $X_{2}(z / v)$ (or $X_{1}(z / v)$ and $X_{2}(v)$).

- The complex convolution theorem can be used to obtain the z transform of a product of discrete-time signals whose z transforms are available.
- The complex convolution theorem can be used to obtain the z transform of a product of discrete-time signals whose z transforms are available.
- It is also the basis of the window method for the design of nonrecursive digital filters (see Chap. 9).
- If $X(z)$ is the z transform of a discrete-time signal $x(n T)$, then

$$
\sum_{n=-\infty}^{\infty}|x(n T)|^{2}=\frac{1}{\omega_{s}} \int_{0}^{\omega_{s}}\left|X\left(e^{j \omega T}\right)\right|^{2} d \omega
$$

where $\omega_{s}=2 \pi / T$.

- If $X(z)$ is the z transform of a discrete-time signal $x(n T)$, then

$$
\sum_{n=-\infty}^{\infty}|x(n T)|^{2}=\frac{1}{\omega_{s}} \int_{0}^{\omega_{s}}\left|X\left(e^{j \omega T}\right)\right|^{2} d \omega
$$

where $\omega_{s}=2 \pi / T$.

- Parseval's formula is often used to solve a problem known as scaling which is associated with the design of recursive digital filters in hardware form (see Chap. 14).
- If T is normalized to 1 s , Parseval's formula simplifies to:

$$
\sum_{n=-\infty}^{\infty}|x(n T)|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|X\left(e^{j \omega T}\right)\right|^{2} d \omega
$$

Function	Definition
Unit impulse	$\delta(n T)= \begin{cases}1 & \text { for } n=0 \\ 0 & \text { for } n \neq 0\end{cases}$
Unit step	$u(n T)= \begin{cases}1 & \text { for } n \geq 0 \\ 0 & \text { for } n<0\end{cases}$
Unit ramp	$r(n T)= \begin{cases}n T & \text { for } n \geq 0 \\ 0 & \text { for } n<0\end{cases}$
Exponential	$u(n T) e^{\alpha n T},(\alpha>0)$
Exponential	$u(n T) e^{\alpha n T},(\alpha<0)$
Sinusoid	$u(n T) \sin \omega n T$

Elementary Discrete-Time Signals Cont'd

(a) Unit impulse, (b) unit step, (c) unit ramp, (d) increasing exponential (e) decreasing exponential, (c) sinusoid.

Example

Find the z transforms of the following signals:
(a) unit-impulse $\delta(n T)$
(b) unit-step $u(n T)$
(c) delayed unit-step $u(n T-k T) K$
(d) signal $u(n T) K w^{n}$
(e) exponential signal $u(n T) e^{-\alpha n T}$
(f) unit-ramp $r(n T)$
(g) sinusoidal signal $u(n T) \sin \omega n T$

Example Cont'd

Solutions

(a) From the definitions of the z transform and $\delta(n T)$, we have

$$
\mathcal{Z} \delta(n T)=\delta(0)+\delta(T) z^{-1}+\delta(2 T) z^{-2}+\cdots=1
$$

Example Cont'd

Solutions

(a) From the definitions of the z transform and $\delta(n T)$, we have

$$
\mathcal{Z} \delta(n T)=\delta(0)+\delta(T) z^{-1}+\delta(2 T) z^{-2}+\cdots=1
$$

(b) As in part (a)

$$
\begin{aligned}
\mathcal{Z} u(n T) & =u(0)+u(T) z^{-1}+u(2 T) z^{-2}+\cdots \\
& =1+z^{-1}+z^{-2}+\cdots=\left(1-z^{-1}\right)^{-1} \\
& =\frac{z}{z-1}
\end{aligned}
$$

Example Cont'd

Solutions

(a) From the definitions of the z transform and $\delta(n T)$, we have

$$
\mathcal{Z} \delta(n T)=\delta(0)+\delta(T) z^{-1}+\delta(2 T) z^{-2}+\cdots=1
$$

(b) As in part (a)

$$
\begin{aligned}
\mathcal{Z} u(n T) & =u(0)+u(T) z^{-1}+u(2 T) z^{-2}+\cdots \\
& =1+z^{-1}+z^{-2}+\cdots=\left(1-z^{-1}\right)^{-1} \\
& =\frac{z}{z-1}
\end{aligned}
$$

(c) From the time-shifting theorem (Theorem 3.4) and part (b), we have

$$
\mathcal{Z}[u(n T-k T) K]=K z^{-k} \mathcal{Z} u(n T)=\frac{K z^{-(k-1)}}{z-1}
$$

Example Cont'd

(d) From the complex-scale-change theorem (Theorem 3.5) and part (b), we get

$$
\begin{aligned}
\mathcal{Z}\left[u(n T) K w^{n}\right] & =K \mathcal{Z}\left[\left(\frac{1}{w}\right)^{-n} u(n T)\right] \\
& =\left.K \mathcal{Z} u(n T)\right|_{z \rightarrow z / w}=\frac{K z}{z-w}
\end{aligned}
$$

Example Cont'd

(d) From the complex-scale-change theorem (Theorem 3.5) and part (b), we get

$$
\begin{aligned}
\mathcal{Z}\left[u(n T) K w^{n}\right] & =K \mathcal{Z}\left[\left(\frac{1}{w}\right)^{-n} u(n T)\right] \\
& =\left.K \mathcal{Z} u(n T)\right|_{z \rightarrow z / w}=\frac{K z}{z-w}
\end{aligned}
$$

(e) By letting $K=1$ and $w=e^{-\alpha T}$ in part (d), we obtain

$$
\mathcal{Z}\left[u(n T) e^{-\alpha n T}\right]=\frac{z}{z-e^{-\alpha T}}
$$

Example Cont'd

(f) From the complex-differentiation theorem (Theorem 3.6) and part (b), we have

$$
\begin{aligned}
\mathcal{Z} r(n T) & =\mathcal{Z}[n T u(n T)]=-T_{z} \frac{d}{d z}[\mathcal{Z} u(n T)] \\
& =-T_{z} \frac{d}{d z}\left[\frac{z}{(z-1)}\right]=\frac{T z}{(z-1)^{2}}
\end{aligned}
$$

Examples Cont'd

(g) From part (e), we deduce

$$
\begin{aligned}
\mathcal{Z}[u(n T) \sin \omega n T] & =\mathcal{Z}\left[\frac{u(n T)}{2 j}\left(e^{j \omega n T}-e^{-j \omega n T}\right)\right] \\
& =\frac{1}{2 j} \mathcal{Z}\left[u(n T) e^{j \omega n T}\right]-\frac{1}{2 j} \mathcal{Z}\left[u(n T) e^{-j \omega n T}\right] \\
& =\frac{1}{2 j}\left(\frac{z}{z-e^{j \omega T}}-\frac{z}{z-e^{-j \omega T}}\right) \\
& =\frac{z \sin \omega T}{z^{2}-2 z \cos \omega T+1}
\end{aligned}
$$

Standard Z Transforms

$x(n T)$	$X(z)$
$\delta(n T)$	1
$u(n T)$	$\frac{z}{z-1}$
$u(n T-k T) K$	$\frac{K z^{-(k-1)}}{z-1}$
$u(n T) K w^{n}$	$\frac{K z}{z-w}$
$u(n T-k T) K w^{n-1}$	$\frac{K(z / w)^{-(k-1)}}{z-w}$
$u(n T) e^{-\alpha n T}$	$\frac{z}{z-e^{-\alpha T}}$
$r(n T)$	$\frac{T z}{(z-1)^{2}}$

Standard Z Transforms Cont'd

$x(n T)$	$X(z)$
$r(n T) e^{-\alpha n T}$	$\frac{T e^{-\alpha T} z}{\left(z-e^{-\alpha T}\right)^{2}}$
$u(n T) \sin \omega n T$	$\frac{z \sin \omega T}{z^{2}-2 z \cos \omega T+1}$
$u(n T) \cos \omega n T$	$\frac{z(z-\cos \omega T)}{z^{2}-2 z \cos \omega T+1}$
$u(n T) e^{-\alpha n T} \sin \omega n T$	$\frac{z e^{-\alpha T} \sin \omega T}{z^{2}-2 z e^{-\alpha T} \cos \omega T+e^{-2 \alpha T}}$
$u(n T) e^{-\alpha n T} \cos \omega n T$	$\frac{z\left(z-e^{-\alpha T} \cos \omega T\right)}{z^{2}-2 z e^{-\alpha T} \cos \omega T+e^{-2 \alpha T}}$

This slide concludes the presentation. Thank you for your attention.

