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Z -Transform Inversion Techniques

The most fundamental method for the inversion of a z
transform is the general inversion method which is based on
the Laurent theorem.

In this method, the inverse of a z transform X (z) is given by

x(nT ) =
1

2πj

∮
Γ
X (z)zn−1 dz

where Γ is a closed contour in the counterclockwise sense
enclosing all the singularities of function X (z)zn−1.
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Z -Transform Inversion Techniques Cont’d

· · ·
x(nT ) =

1

2πj

∮
Γ
X (z)zn−1 dz

At first sight, the above contour integration may appear to be
a formidable task.

However, for most DSP applications, the z transform turns
out to be a rational function and for such functions the
contour integral can be easily evaluated by using the residue
theorem.
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Z -Transform Inversion Techniques Cont’d

According to the residue theorem,

x(nT ) =
1

2πj

∮
Γ

X (z)zn−1 dz =
P∑
i=1

res z→pi

[
X (z)zn−1

]
where res z→pi

[
X (z)zn−1

]
and P are the residue of pole pi and the

number of poles of X (z)zn−1, respectively.

For a pole of order mi ,

res z=pi

[
X (z)zn−1

]
=

1

(mi − 1)!
lim
z→pi

dmi−1

dzmi−1

[
(z − pi )

miX (z)zn−1
]

For a simple pole,

res z=pi

[
X (z)zn−1

]
= lim

z→pi

[
(z − pi )X (z)zn−1

]
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Example – General Inversion Method

Using the general inversion method, find the inverse z transform of

X (z) =
1

2(z − 1)
(
z + 1

2

)
Solution We note that the factor zn−1 introduces a pole in
X (z)zn−1 at the origin for the case n = 0, which must be taken
into account in the evaluation of x(0).

Note: For n > 0, the pole at the origin disappears.
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Example Cont’d

Thus for n = 0, we have

X (z)zn−1
∣∣
n=0

=
zn−1

2(z − 1)
(
z + 1

2

)∣∣∣∣∣
n=0

=
1

2z(z − 1)
(
z + 1

2

)
Hence x(0) =

1

2(z − 1)
(
z + 1

2

)∣∣∣∣∣
z=0

+
1

2z
(
z + 1

2

)∣∣∣∣∣
z=1

+
1

2z(z − 1)

∣∣∣∣
z=−1

2

= −1 + 1
3 + 2

3 = 0

Actually, this follows from the initial-value theorem (Theorem 3.8)
without any calculations.
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Example Cont’d

For n > 0

x(nT ) =
zn−1

2
(
z + 1

2

)∣∣∣∣∣
z=1

+
zn−1

2(z − 1)

∣∣∣∣
z=−1

2

= 1
3 −

1
3

(
−1

2

)n−1

and from the initial-value theorem, x(nT ) = 0 for n < 0.

Therefore, for any value of n, we have

x(nT ) = u(nT − T )
[

1
3 −

1
3

(
−1

2

)n−1
]
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Example – General Inversion Method

Using the general inversion method, find the inverse z transform of

X (z) =
(2z − 1)z

2(z − 1)
(
z + 1

2

)
Solution We can write

X (z)zn−1 =
(2z − 1)z · zn−1

2(z − 1)
(
z + 1

2

) =
(2z − 1)zn

2(z − 1)
(
z + 1

2

)
We note that X (z)zn−1 has simple poles at z = 1 and −1

2 .

Furthermore, the zero in X (z) at the origin cancels the pole at the
origin introduced by zn−1 for the case n = 0.
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Example Cont’d

· · ·
X (z)zn−1 =

(2z − 1)zn

2(z − 1)
(
z + 1

2

)
Hence for any n ≥ 0, the general inversion formula gives

x(nT ) = res z=1

[
X (z)zn−1

]
+ res

z=−1
2

[
X (z)zn−1

]
=

(2z − 1)zn

2
(
z + 1

2

) ∣∣∣∣∣
z=1

+
(2z − 1)zn

2(z − 1)

∣∣∣∣
z=−1

2

=
1

3
+

2

3

(
−1

2

)n
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Example Cont’d

Since the numerator degree in X (z) does not exceed the
denominator degree, it follows that x(nT ) is a right-sided signal,
i.e., x(nT ) = 0 for n < 0, according to the Corollary of Theorem
3.8.

Therefore, for any value of n, we have

x(nT ) = u(nT )
[

1
3 + 2

3

(
−1

2

)n]
where u(nT ) is the unit-step function.
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Z -Transform Inversion Techniques Cont’d

Since

– the z transform is a particular type of Laurent series, and

– the Laurent series in a given annulus of convergence is unique

it follows that any technique that can be used to generate a power
series for X (z) that converges in the outermost annulus of
convergence can be used to obtain the inverse z transform.
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Z -Transform Inversion Techniques Cont’d

Consequently, several inversion techniques are available, as follows:

– using the binomial theorem,

– using the convolution theorem,

– performing long division,

– using the initial-value theorem, or

– expanding X (z) into partial fractions.

Some of these techniques are illustrated by examples in the next
few slides.
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Example – Binomial Theorem

Using the binomial method, find the inverse z transform of

X (z) =
Kzm

(z − w)k

where m and k are integers, and K and w are constants, possibly
complex.

Solution The inverse z transform can be obtained by obtaining a
binomial series for X (z) that converges in the outside annulus of
X (z).
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Example Cont’d

Such a binomial series can be obtained by expressing X (z) as

X (z) = Kzm−k [1 + (−wz−1)]−k

= Kzm−k
[(
−k
0

)
+

(
−k
1

)
(−wz−1) +

(
−k
2

)
(−wz−1)2

+ · · ·+
(
−k
n

)
(−wz−1)n + · · ·

]

where

(
−k
n

)
=

(−k)(−k − 1) . . . (−k − n + 1)

n!

Hence

X (z) =
∞∑

n=−∞
Ku(nT )

(−k)(−k − 1) · · · (−k − n + 1)(−w)nz−n+m−k

n!
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Example Cont’d

· · ·

X (z) =
∞∑

n=−∞
Ku(nT )

(−k)(−k − 1) · · · (−k − n + 1)(−w)nz−n+m−k

n!

Now if we let n = n′ + m − k and then replace n′ by n, we have

X (z) =
∞∑

n=−∞

{
Ku[(n + m − k)T ]

×(−k)(−k − 1) · · · (−n −m + 1)(−w)n+m−k

(n + m − k)!

}
z−n
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Example Cont’d

· · ·
X (z) =

∞∑
n=−∞

{
Ku[(n + m − k)T ]

× (−k)(−k − 1) · · · (−n −m + 1)(−w)n+m−k

(n + m − k)!

}
z−n

Hence the coefficient of z−n is obtained as

x(nT ) = Z−1

[
Kzm

(z − w)k

]
= Ku[(n + m − k)T ]

(−k)(−k − 1) · · · (−n −m + 1)(−w)n+m−k

(n + m − k)!

By assigning different values to constants k , K , and m a variety of
z-transform pairs can be deduced as shown in the next slide.
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Example Cont’d

x(nT) X(z)

u(nT )
z

z − 1

u(nT − kT )K
Kz−(k−1)

z − 1

u(nT )Kwn Kz

z − w

u(nT − kT )Kwn−1 K (z/w)−(k−1)

z − w

u(nT )e−αnT
z

z − e−αT

r(nT )
Tz

(z − 1)2

r(nT )e−αnT
Te−αT z

(z − e−αT )2

Frame # 17 Slide # 21 A. Antoniou Digital Filters – Sec. 4.8



Use of Real Convolution

From the real-convolution theorem

Z
∞∑

k=−∞

x1(kT )x2(nT − kT ) = X1(z)X2(z)

If we take the inverse z transform of both sides, we get

∞∑
k=−∞

x1(kT )2(nT − kT ) = Z−1[X1(z)X2(z)]

or

Z−1[X1(z)X2(z)] =
∞∑

k=−∞

x1(kT )x2(nT − kT )

Thus, if a z transform can be expressed as a product of two z
transforms whose inverses are available, then performing the
convolution summation will yield the desired inverse.
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Example – Real Convolution

Find the inverse z transform of

X3(z) =
z

(z − 1)2

Solution We note that

X3(z) = X1(z)X2(z)

where

X1(z) =
z

z − 1
and X2(z) =

1

z − 1
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Example Cont’d

· · ·
X1(z) =

z

z − 1
and X2(z) =

1

z − 1

From the table of standard z transforms, we can write

x1(nT ) = u(nT ) and x2(nT ) = u(nT − T )

Hence for n ≥ 0, the real convolution yields

x3(nT ) =
∞∑

k=−∞

x1(kT )x2(nT − kT ) =
∞∑

k=−∞

u(kT )u(nT − T − kT )

= · · ·+
k=−1︷ ︸︸ ︷

u(−T )u(nT ) +

k=0︷ ︸︸ ︷
u(0)u(nT − T ) +

k=1︷ ︸︸ ︷
u(T )u(nT − 2T ) + · · ·

+

k=n−1︷ ︸︸ ︷
u(nT − T )u(0) +

k=n︷ ︸︸ ︷
u(nT )u(−T ) + · · ·

= 0 + 1 + 1 + · · ·+ 1 + 0 = n
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Example Cont’d

For n < 0, we have

x3(nT ) =
∞∑

k=−∞

u(kT )u(nT − T − kT )

= · · ·+
k=−1︷ ︸︸ ︷

u(−T )u(nT ) +

k=0︷ ︸︸ ︷
u(0)u(nT − T ) +

k=1︷ ︸︸ ︷
u(T )u(nT − 2T ) + · · ·

+

k=n−1︷ ︸︸ ︷
u(nT − T )u(0) +

k=n︷ ︸︸ ︷
u(nT )u(−T ) + · · ·

and since all the terms are zero, we get

x3(nT ) = 0

(This result also follows from the initial value theorem.)
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Example Cont’d

Summarizing, for n ≥ 0,

x3(nT ) = n

and for n < 0,
x3(nT ) = 0

Therefore, for any value of n, we have

x3(nT ) = u(nT )n
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Example – Real Convolution

Using the real-convolution theorem, find the inverse z transforms of

X3(z) =
z

(z − 1)3

Solution For this example, we can write

X1(z) =
z

(z − 1)2
and X2(z) =

1

z − 1

and from the previous example, we have

x1(nT ) = u(nT )n and x2(nT ) = u(nT − T )
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Example Cont’d

From the initial value theorem, for n < 0, we have

x3(n) = 0

For n ≥ 0, the convolution summation gives

x3(nT ) =
∞∑

k=−∞
ku(kT )u(nT − T − kT )

= +

k=0︷ ︸︸ ︷
0 · [u(nT − T )] +

k=1︷ ︸︸ ︷
1 · [u(nT − 2T )] + · · ·

+

k=n−1︷ ︸︸ ︷
(n − 1)u(0) +

k=n︷ ︸︸ ︷
nu(−T )

= +0 + 1 + 2 + · · ·+ n − 1 + 0

=
n−1∑
k=1

k
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Example Cont’d

A closed-form solution can be obtained by using an old trick
of algebra.

The story goes that Gauss’ mathematics teacher had
something to attend to and wanted to keep his class busy. So
he asked the class to find the sum:

1 + 2 + 3 + · · · 99

As the teacher was getting ready to leave, Gauss shouted out
“Sir, the answer is 4950!”

“It’s very simple, Sir, twice the sum is 100× 99”.
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Example Cont’d

Gauss’ reasoning was as follows:

1 2 3 · · · n − 1
n − 1 n − 2 n − 3 · · · 1
−−− −−− −−− −−−

n n n · · · n

That is,
n−1∑
k=1

k = 1
2n(n − 1)

Using this result, x3(nT ) can be obtained as

x3(nT ) =
n−1∑
k=1

k = 1
2u(nT )n(n − 1)
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Use of Long Division

Given a z transform X (z) = N(z)/D(z), a series that
converges in the outermost annulus of X (z) can be readily
obtained by arranging the numerator and denominator
polynomials in descending powers of z and then performing
polynomial division also known as long division.
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Example – Long Division

Using long division, find the inverse z transform of

X (z) =
−1

4 + 1
2z −

1
2z

2 − 7
4z

3 + 2z4 + z5

−1
4 + 1

4z − z2 + z3

Solution The numerator and denominator polynomials can be
arranged in descending powers of z as

X (z) =
z5 + 2z4 − 7

4z
3 − 1

2z
2 + 1

2z −
1
4

z3 − z2 + 1
4z −

1
4
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Example Cont’d

z2 + 3z + 1 + z−2 + z−3 + 3
4z
−4 + · · ·

z3 − z2 + 1
4z −

1
4 z5 + 2z4 − 7

4z
3 − 1

2z
2 + 1

2z −
1
4

∓z5 ± z4 ∓ 1
4z

3 ± 1
4z

2

3z4 − 8
4z

3 − 1
4z

2 + 1
2z −

1
4

∓3z4 ± 3z3 ∓ 3
4z

2 ± 3
4z

z3 − z2 + 5
4z −

1
4

∓z3 ± z2 ∓ 1
4z ±

1
4

z
∓z ± 1∓ 1

4z
−1 ± 1

4z
−2

1− 1
4z
−1 + 1

4z
−2

∓1± z−1 ∓ 1
4z
−2 ± 1

4z
−3

3
4z
−1 + 1

4z
−3

...

Frame # 29 Slide # 37 A. Antoniou Digital Filters – Sec. 4.8



Example Cont’d

Therefore,

X (z) = z2 + 3z + 1 + z−2 + z−3 + 3
4z
−4 + · · ·

i.e.,

x(−2T ) = 1, x(−T ) = 3, x(0) = 1, x(T ) = 0

x(2T ) = 1, x(3T ) = 1, x(4T ) = 3
4 , . . .
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Use of Long Division Cont’d

As illustrated by the previous example, the long-division
approach readily yields any nonzero values of the signal for
n ≤ 0 but does not yield a closed-form solution.

On the other hand, the general-inversion method yields a
closed-form solution but presents certain difficulties in z
transforms of two-sided signals because such z transforms
have a higher-order pole at the origin whose residue is difficult
to obtain.

The inverses of such z transforms can be easily obtained in
closed form by finding the values of the signal for n ≤ 0 using
long division and then applying the general inversion method
to the remainder of the long division.
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Use of Long Division Cont’d

As illustrated by the previous example, the long-division
approach readily yields any nonzero values of the signal for
n ≤ 0 but does not yield a closed-form solution.

On the other hand, the general-inversion method yields a
closed-form solution but presents certain difficulties in z
transforms of two-sided signals because such z transforms
have a higher-order pole at the origin whose residue is difficult
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The inverses of such z transforms can be easily obtained in
closed form by finding the values of the signal for n ≤ 0 using
long division and then applying the general inversion method
to the remainder of the long division.
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Use of Long Division Cont’d

Consider a z transform whose numerator degree exceeds the
denominator degree of the form

X (z) =
N(z)

D(z)
=

∑M
i=0 aiz

M−i∑N
i=0 biz

N−i

The first nonzero value of x(nT ) occurs at n = (N −M)T
according to the initial value theorem.
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Use of Long Division Cont’d

Performing long division until the signal values x [(N −M)T ],
x [(N −M + 1)T ], . . ., x(0) are obtained, X (z) can be expressed as

X (z) =
N(z)

D(z)
= Q(z) + R(z)

where

Q(z) = x [(N−M)T ]z (M−N) +x [(N−M+1)T ]z (M−N−1) +· · ·+x(0)

is the quotient polynomial and

R(z) =
N ′(z)

D(z)

is the remainder whose numerator degree is less than the
denominator degree.
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Use of Long Division Cont’d

· · ·
X (z) =

N(z)

D(z)
= Q(z) + R(z) where R(z) =

N ′(z)

D(z)

Hence

x(nT ) = Z−1Q(z) + Z−1 N
′(z)

D(z)

= x [(N −M)T ]z (M−N) + x [(N −M + 1)T ]z (M−N−1) + · · ·

+x(0) + Z−1 N
′(z)

D(z)

Since Z−1 N′(z)
D(z) represents a right-sided signal, it can be easily

evaluated in closed-form by using the general inversion method.
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Example – Long Division and General Inversion
Method

Using long division along with the general inversion method, obtain
a closed-form solution for the inverse z transform of

X (z) =
−1

4 + 1
2z −

1
2z

2 − 7
4z

3 + 2z4 + z5

−1
4 + 1

4z − z2 + z3
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Example Cont’d

Solution

z2 + 3z + 1

z3 − z2 + 1
4z −

1
4 z5 + 2z4 − 7

4z
3 − 1

2z
2 + 1

2z −
1
4

∓z5 ± z4 ∓ 1
4z

3 ± 1
4z

2

3z4 − 8
4z

3 − 1
4z

2 + 1
2z −

1
4

∓3z4 ± 3z3 ∓ 3
4z

2 ± 3
4z

z3 − z2 + 5
4z −

1
4

∓z3 ± z2 ∓ 1
4z ±

1
4

z

Hence
X (z) = Q(z) + R(z) = z2 + 3z + 1 +

z

z3 − z2 + 1
4z −

1
4
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Example Cont’d

Applying the inverse z transform, we have

x(nT ) = Z−1

(
z2 + 3z + 1 +

z

z3 − z2 + 1
4z −

1
4

)
= x(−2T )z2 + x(−T )z + x(0) + Z−1R(z)

where x(−2T ) = 1, x(−T ) = 3, x(0) = 1, and

R(z) =
z

z3 − z2 + 1
4z −

1
4

=
z

(z − 1)(z + j 1
2 )(z − j 1

2 )

The inverse z transform of R(z) can now be obtained by using the
general inversion method.
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Example Cont’d

· · ·
R(z) =

z

z3 − z2 + 1
4z −

1
4

=
z

(z − 1)(z + j 1
2 )(z − j 1

2 )

Since −j 1
2 = 1

2e
−jπ/2, the residues of R(z)zn−1 can be obtained as

R1 = lim
z→1

zn

(z2 + 1
4 )

=
1

1 + 1
4

= 4
5

R2 = lim
z→−j 1

2

zn

(z − 1)(z − j 1
2 )

=

(
1
2

)n
e−jnπ/2

(− 1
2 + j)

=
2√
5

(
1
2

)n
e−jnπ/2

e j(π−tan−12)
= 2√

5

(
1
2

)n
e−j(nπ/2+π−tan−12)

R3 = R∗2 = 2√
5

(
1
2

)n
e j(nπ/2+π−tan−12)
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Example Cont’d

Thus for n ≥ 1, we have

R(z) =) R1 + R2 + R3

= 4
5 + 4√

5

(
1
2

)n 1
2

[
e j(nπ/2+π−tan−12) + e−j(nπ/2+π−tan−12)

]
Hence

r(nT ) = 4
5u(nT ) + 4√

5

(
1
2

)n
cos(nπ/2 + π − tan−12)

Since x(−2T ) = 1, x(−T ) = 3, and x(0) = 1, the value of x(nT )
for any value of n is given by

x(nT ) = δ(nT + 2T ) + 3δ(nT + T ) + δ(nT )

+u(nT − T )[ 4
5 + 4√

5

(
1
2

)n
cos(nπ/2 + π − tan−12)]
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Use of Partial Fractions

If the degree of the numerator polynomial in X (z) is equal to
or less than the degree of the denominator polynomial and the
poles are simple, the inverse of X (z) can very quickly be
obtained through the use of partial fractions.

Two techniques are available, as detailed next.
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Use of Partial Fractions

If the degree of the numerator polynomial in X (z) is equal to
or less than the degree of the denominator polynomial and the
poles are simple, the inverse of X (z) can very quickly be
obtained through the use of partial fractions.

Two techniques are available, as detailed next.
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Use of Partial Fractions, Technique I

The function X (z)/z can be expanded into partial fractions as

X (z)

z
=

R0

z
+

P∑
i=1

Ri

z − pi

where P is the number of poles in X (z) and

R0 = lim
z→0

X (z) Ri = res z=pi

[
X (z)

z

]

Hence

X (z) = R0 +
P∑
i=1

Riz

z − pi
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Use of Partial Fractions, Technique I

The function X (z)/z can be expanded into partial fractions as

X (z)

z
=

R0

z
+

P∑
i=1

Ri

z − pi

where P is the number of poles in X (z) and

R0 = lim
z→0

X (z) Ri = res z=pi

[
X (z)

z

]
Hence

X (z) = R0 +
P∑
i=1

Riz

z − pi
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Use of Partial Fractions, Technique I Cont’d

· · ·
X (z) = R0 +

P∑
i=1

Riz

z − pi

Therefore,

x(nT ) = Z−1

(
R0 +

P∑
i=1

Riz

z − pi

)
= Z−1R0 +

P∑
i=1

Z−1 Riz

z − pi

and from the table of standard z transforms, we get

x(nT ) = R0δ(nT ) +
P∑
i=1

u(nT )Rip
n
i
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Example – Partial Fractions Method

Using Technique I, find the inverse z transform of

X (z) =
z

z2 + z + 1
2

Solution On expanding X (z)/z into partial fractions, we get

X (z)

z
=

1

z2 + z + 1
2

=
1

(z − p1)(z − p2)
=

R1

z − p1
+

R2

z − p2

where p1 =
e j3π/4

√
2

and p2 =
e−j3π/4

√
2

Thus we obtain

R1 = res z=p1

[
X (z)

z

]
= −j and R2 = res z=p2

[
X (z)

z

]
= j

Note: Complex conjugate poles give complex conjugate residues.
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Example Cont’d

From the table of z transforms, we can now obtain

x(nT ) = u(nT )
(
− jpn1 + jpn2

)
=
(

1
2

)n/2
u(nT )

1

j

(
e j3πn/4 − e−j3πn/4

)
= 2

(
1
2

)n/2
u(nT ) sin

3πn

4
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Use of Partial Fractions, Technique II

An alternative approach is to expand X (z) into partial fractions

as X (z) = R0 +
P∑
i=1

Ri

z − pi

where R0 = lim
z→∞

X (z) Ri = res z=piX (z)

and P is the number of poles in X (z).

Thus

x(nT ) = Z−1

[
R0 +

P∑
i=1

Ri

z − pi

]

= Z−1R0 +
P∑
i=1

Z−1 Ri

z − pi
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Use of Partial Fractions, Technique II

An alternative approach is to expand X (z) into partial fractions

as X (z) = R0 +
P∑
i=1

Ri

z − pi

where R0 = lim
z→∞

X (z) Ri = res z=piX (z)

and P is the number of poles in X (z).

Thus

x(nT ) = Z−1

[
R0 +

P∑
i=1

Ri

z − pi

]

= Z−1R0 +
P∑
i=1

Z−1 Ri

z − pi
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Use of Partial Fractions, Technique II Cont’d

· · ·
x(nT ) = Z−1R0 +

P∑
i=1

Z−1 Ri

z − pi

Therefore, from Table 3.2, we obtain

X (nT ) = R0δ(nT ) +
P∑
i=1

u(nT − T )Rip
n−1
i
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Example – Partial Fractions Method

Using Technique II, find the inverse z transform of

X (z) =
z(

z − 1
2

) (
z − 1

4

)
Solution X (z) can be expressed as

X (z) =
z(

z − 1
2

) (
z − 1

4

) = R0 +
R1

z − 1
2

+
R2

z − 1
4

where

R0 = lim
z→∞

X (z) = lim
z→∞

z(
z − 1

2

) (
z − 1

4

) = lim
z→∞

1

z
= 0

R1 = res
z=

1
2
X (z) =

z(
z − 1

4

)∣∣∣∣∣
z=

1
2

= 2
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Example Cont’d

· · ·
R0 = lim

z→∞
X (z) = lim

z→∞

z(
z − 1

2

) (
z − 1

4

) = lim
z→∞

1

z
= 0

R1 = res
z=

1
2
X (z) =

z(
z − 1

4

) ∣∣∣∣∣
z=

1
2

= 2

and R2 = res
z=

1
4
X (z) =

z(
z − 1

2

) ∣∣∣∣∣
z=

1
4

= −1

Hence X (z) =
2

z − 1
2

+
−1

z − 1
4

and from Table 3.2

x(nT ) = 4u(nT − T )
[(

1
2

)n − ( 1
4

)n]
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Use of Partial Fractions Cont’d

The partial fraction method is based on the assumption that the
denominator degree of the z transform is equal to or greater than
the numerator degree.

If this is not the case, then through long division the z transform
can be expressed as

X (z) =
N(z)

D(z)
= Q(z) + R(z)

where

Q(z) = x [(N−M)T ]z (M−N) +x [(N−M+1)T ]z (M−N−1) +· · ·+x(0)

is the quotient polynomial and

R(z) =
N ′(z)

D(z)

is the remainder polynomial whose denominator degree is greater
than the numerator degree.
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Use of Partial Fractions Cont’d

The partial fraction method is based on the assumption that the
denominator degree of the z transform is equal to or greater than
the numerator degree.

If this is not the case, then through long division the z transform
can be expressed as

X (z) =
N(z)

D(z)
= Q(z) + R(z)

where

Q(z) = x [(N−M)T ]z (M−N) +x [(N−M+1)T ]z (M−N−1) +· · ·+x(0)

is the quotient polynomial and

R(z) =
N ′(z)

D(z)

is the remainder polynomial whose denominator degree is greater
than the numerator degree.
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Important Notes

Given a z transform X (z), a partial fraction expansion can be
obtained through the following steps:

– represent the residues by variables,
– generate a system of simultaneous equations, and then
– solve the system of equations for the residues.
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Important Notes Cont’d

For example, if

X (z) =
z2 − 2

(z − 1)(z − 2)
(A)

we can write

X (z) = R0 +
R1

z − 1
+

R2

z − 2

=
R0(z − 1)(z − 2) + R1z − 2R1 + R2z − R2

(z − 1)(z − 2)

=
R0(z2 − 3z + 2) + R1z − 2R1 + R2z − R2

(z − 1)(z − 2)

=
R0z

2 − 3R0z + 2R0 + R1z − 2R1 + R2z − R2

(z − 1)(z − 2)

=
R0z

2 + (R1 + R2 − 3R0)z + 2R0 − 2R1 − R2

(z − 1)(z − 2)
(B)
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Important Notes Cont’d

By equating equal powers of z in Eqs. (A) and (B), we get

z2 : R0 = 1
z1 : R1 + R2 − 3R0 = 0
z0 : 2R0 − 2R1 − R2 = −2

Solving this system of equations would give the correct
solution as

R0 = 1, R1 = 1, R2 = 2
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Important Notes Cont’d

By equating equal powers of z in Eqs. (A) and (B), we get

z2 : R0 = 1
z1 : R1 + R2 − 3R0 = 0
z0 : 2R0 − 2R1 − R2 = −2

Solving this system of equations would give the correct
solution as

R0 = 1, R1 = 1, R2 = 2
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Important Notes Cont’d

For a z transform with six poles, a set of 6 simultaneous
equations with 6 unknowns would need to be solved.

Obviously, this is a very inefficient method and it should
definitely be avoided.
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Important Notes Cont’d

For a z transform with six poles, a set of 6 simultaneous
equations with 6 unknowns would need to be solved.

Obviously, this is a very inefficient method and it should
definitely be avoided.
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Important Notes Cont’d

The quick solution for this example is easily obtained by
evaluating the residues individually, as follows:

R0 =
z2 − 2

(z − 1)(z − 2)

∣∣∣∣
z=∞

= 1, R1 =
z2 − 2

(z − 2)

∣∣∣∣
z=1

= 1

R2 =
z2 − 2

(z − 1)

∣∣∣∣
z=2

= 2

Hence

X (z) =
z2 − 2

(z − 1)(z − 2)
= R0 +

R1

z − 1
+

R2

z − 2

= 1 +
1

z − 1
+

2

z − 2

Frame # 54 Slide # 71 A. Antoniou Digital Filters – Sec. 4.8



Important Notes Cont’d

The quick solution for this example is easily obtained by
evaluating the residues individually, as follows:

R0 =
z2 − 2

(z − 1)(z − 2)

∣∣∣∣
z=∞

= 1, R1 =
z2 − 2

(z − 2)

∣∣∣∣
z=1

= 1

R2 =
z2 − 2

(z − 1)

∣∣∣∣
z=2

= 2

Hence

X (z) =
z2 − 2

(z − 1)(z − 2)
= R0 +

R1

z − 1
+

R2

z − 2

= 1 +
1

z − 1
+

2

z − 2
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Important Notes Cont’d

In the partial-fraction method, constant R0 must always be included
although it may sometimes be found to be zero.

For example, if R0 were omitted in the partial-fraction expansion

X (z) =
z2 − 2

(z − 1)(z − 2)
= R0 +

R1

z − 1
+

R2

z − 2

then the right-hand side would assume the form

R1

z − 1
+

R2

z − 2
=

(R1 + R2)z − (2R1 + R2)

(z − 1)(z − 2)

which cannot represent the given function whatever the values of R1

and R2!
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Important Notes Cont’d

In the partial-fraction method, constant R0 must always be included
although it may sometimes be found to be zero.

For example, if R0 were omitted in the partial-fraction expansion

X (z) =
z2 − 2

(z − 1)(z − 2)
= R0 +

R1

z − 1
+

R2

z − 2

then the right-hand side would assume the form

R1

z − 1
+

R2

z − 2
=

(R1 + R2)z − (2R1 + R2)

(z − 1)(z − 2)

which cannot represent the given function whatever the values of R1

and R2!
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Important Notes Cont’d

By the way, you can always check your work by combining the
partial fractions back into a function, as you can check a
division by multiplying.
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This slide concludes the presentation.

Thank you for your attention.
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