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Spectral Representation of Discrete-Time Signals

I The frequency spectrum of a discrete-time signal is given by

X (z)
∣∣
z=e jωT = X (e jωT )

and it is a complex quantity in general.

I The magnitude and angle of X (e jωT ), i.e.,

A(ω) = |X (e jωT )| and φ(ω) = argX (e jωT )

define the amplitude spectrum and phase spectrum of the
discrete-time signal x(nT ), respectively.
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Spectral Representation Cont’d

I The exponential function e jωT is a complex number of
magnitude 1 and angle ωT and as ω is increased from zero to
2π/T , e jωT will trace a circle of radius 1 in the z plane,
which is referred to as the unit circle.

I In effect, the frequency spectrum of a discrete-time signal,
x(nT ), can be deduced by evaluating its z transform, X (z),
on the unit circle.
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Geometrical Features of Z Plane

I If ω = 0, then e jωT = e0 = 1, i.e., point A corresponds to
zero frequency.
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Geometrical Features of Z Plane Cont’d

I At half the sampling frequency, ω = ωs/2 = π/T and hence
e jωT = e jπ = −1, i.e., point C corresponds to the Nyquist
frequency.
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Geometrical Features of Z Plane Cont’d

I At the sampling frequency, ω = ωs = 2π/T and hence
e jωT = e j2π = 1, i.e., point A also corresponds to the
sampling frequency.
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Geometrical Features of Z Plane Cont’d

I If vector e jωT is rotated k complete revolution starting from
some arbitrary point B, it will return to point B.
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Geometrical Features of Z Plane Cont’d

Hence

e j(ωT+2πk) = e(jω+2πk/T )T = e(jω+kωs)T = e jωT

and, therefore,
X (e j(ω+kωs)T ) = X (e jωT )

In effect, the frequency spectrum of a discrete-time signal is a
periodic function of frequency with period ωs .
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Example

Obtain expressions for the frequency, amplitude, and phase
spectrums of the signal

x(nT ) = u(nT )e−αnT sinω0nT

Solution The z transform of the signal can be obtained from
Table 3.2 as

X (z) =
ze−αT sinω0T

z2 − 2ze−αT cosω0T + e−2αT

X (z) can be expressed as

X (z) =
a1z

z2 + b1z + b0

where

a1 = e−αT sinω0T b0 = e−2αT b1 = −2e−αT cosω0T
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Example Cont’d

· · ·
X (z) =

a1z

z2 + b1z + b0

Hence the frequency spectrum of the signal is given by

X (e jωT ) =
a1e

jωT

e j2ωT + b1e jωT + b0

=
a1e

jωT

cos 2ωT + j sin 2ωT + b1 cosωT + jb1 sinωT + b0

=
a1e

jωT

b0 + b1 cosωT + cos 2ωT + j(b1 sinωT + sin 2ωT )
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Example Cont’d

The amplitude and phase spectrums can be deduced by letting

X (e jωT ) =
a1e

jωT

b0 + b1 cosωT + cos 2ωT + j(b1 sinωT + sin 2ωT )

= A(ω)e jφ(ω)

Hence

A(ω) =
|a1| · |e jωT |

|(b0 + b1 cosωT + cos 2ωT ) + j(b1 sinωT + sin 2ωT )|

=
|a1|√

(b0 + b1 cosωT + cos 2ωT )2 + (b1 sinωT + sin 2ωT )2

=
|a1|√

1 + b20 + b21 + 2b1(1 + b0) cosωT + 2b0 cos 2ωT
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Example Cont’d

φ(ω) = arg(a1) + arg e jωT − arg[b0 + b1 cosωT + cos 2ωT

+j(b1 sinωT + sin 2ωT )]

= arg a1 + ωT − tan−1 b1 sinωT + sin 2ωT

b0 + b1 cosωT + cos 2ωT

where

arg a1 =

{
0 if a1 ≥ 0

−π otherwise
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Example Cont’d
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Amplitude and phase spectrums.
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Example Cont’d
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Periodicity of amplitude spectrum.
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This slide concludes the presentation.

Thank you for your attention.
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