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Introduction

» Through the use of the z transform, a discrete-time system
can be characterized by a discrete-time transfer function.
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Introduction

» Through the use of the z transform, a discrete-time system
can be characterized by a discrete-time transfer function.

» The discrete-time transfer function plays the same key role as
the continuous-time transfer function in an analog system.

» It can be used to obtain the time-domain response of a
system to any excitation or its frequency-domain response.
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Introduction

» Through the use of the z transform, a discrete-time system
can be characterized by a discrete-time transfer function.

» The discrete-time transfer function plays the same key role as
the continuous-time transfer function in an analog system.

» It can be used to obtain the time-domain response of a
system to any excitation or its frequency-domain response.

» In this presentation, the definition, derivation, and properties
of the discrete-time transfer function are examined.
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Discrete-Time Transfer Function

» The transfer function of a discrete-time system is the ratio of
the z transforms of the response and the excitation.
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Discrete-Time Transfer Function

» The transfer function of a discrete-time system is the ratio of
the z transforms of the response and the excitation.

» Consider a linear time-invariant discrete-time system and let

— x(nT) be the excitation (or input)
— y(nT) be the response (or output)
— h(nT) be the impulse response
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Discrete-Time Transfer Function cCont'd

» The convolution summation gives

o0

y(nT)= Y x(kT)h(nT — kT)

k=—00
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Discrete-Time Transfer Function cCont'd

» The convolution summation gives

o0

y(nT)= Y x(kT)h(nT — kT)

k=—o00
» From the real-convolution theorem (see Chap. 4), we have

Zy(nT) = Zx(nT)Zh(nT)
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Discrete-Time Transfer Function cCont'd

» The convolution summation gives

o0

y(nT)= Y x(kT)h(nT — kT)

k=—00
» From the real-convolution theorem (see Chap. 4), we have
Zy(nT) = Zx(nT)Zh(nT)
» Therefore,
4o

In effect, the transfer function is also the z transform of the
impulse response of the system.
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Derivation of Transfer Function from Difference Eqn.

» A noncausal, linear, time-invariant, recursive discrete-time
system can be represented by the difference equation

N N

y(nT)= > ax(nT —iT) =Y byy(nT —iT)

i=—M i=1

where M and N are positive integers.
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Derivation of Transfer Function from Difference Eqn.

» A noncausal, linear, time-invariant, recursive discrete-time
system can be represented by the difference equation

N N

y(nT)= > ax(nT —iT) =Y byy(nT —iT)

i=—M i=1
where M and N are positive integers.
» The z transform gives

N

N
Y(2)=Zy(nT) =2 Y ax(nT—iT)=Z> biy(nT—iT)
i=—M i=1
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Transfer Function from Difference Equation cont'd

N N
Y(z)=2 Y aix(nT —iT)= 2> byy(nT —iT)
i=—M i=1

Using the linearity and time-shifting theorems of the z transform,
we get

Y(z) = Z aiz”' Zx(nT) sz Zy(nT)

i=1

= Z a;z_iX(Z) — Z biZ_iY(Z)
i=—M i=1
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Transfer Function from Difference Equation cont'd

N ' N _
Y(z) = Z aiz”'X(z) — Z biz7'Y(z)
i=—M i=1

Solving for Y(z)/X(z) and then multiplying the numerator and
denominator polynomials by zV, we get

Y(z2) SN _yaiz _ YN iz

X(z2) 1+3N bzt N4 SN N
MEN-1 . 4 ay

H(z) =

a(,M)zM“V + aA(—M+1)Z
zN 4+ byzN=1 ... + by
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Transfer Function from Difference Equation cont'd

B a(,M)zM+N + a(,M+1)ZM+N_1 + -+ an
N zN 4 byzN=1 .. + by

H(z)

If M= N =2, we have

_ N(z) 3(72)24 + a(,l)z3 +a9z® 4+ a1z + a

H = =
(2) D(z) 224+ biz+ by
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Transfer Function from Difference Equation cont'd

a(,M)zM+N + a(,M+1)ZM+N_1 + -+ an

H
(<) ZN 4+ by zN=1 - by

If M= N =2, we have

H(z) = N(z) _ 3(72)24 + 3(71)23 + apz® + a1z + a»
D(Z) 22+ biz+ b

Note: In noncausal systems, the degree of the numerator
polynomial exceeds the degree of the denominator polynomial.
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Transfer Function from Difference Equation Cont'd

» For a causal system, M = 0 and hence

Hz) = 2em? T Facminz

M+N-1 4

-+ an

zN 4 byzN=1 .. + by
aozN + a1Vt 4ty
ZN+b12N_1+"'+bN
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Transfer Function from Difference Equation cont'd

» For a causal system, M = 0 and hence

a(,M)ZMJrN + 3(7M+1)ZM+N71 +---+an
zN 4 byzN=1 .. + by

aozN + a1Vt 4ty

ZN+b12N_1+"'+bN

H(z) =

» Since some of the numerator coefficients can be zero, we
conclude that in causal recursive systems the numerator
degree is equal to or less than the denominator degree.
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Representation by Zero-Pole Plots

» By factorizing the numerator and denominator polynomials,
the transfer function of a noncausal system can be expressed

as
N(z) _ Hollf,(z —z)™
H(Z) = - P
D(z) [[iz1(z = pi)™
where
- 21, 2o, ..., zz are the zeros of H(z)
— p1, P2, ..., pp are the poles of H(z)

— m; is the order of zero z;

— nj is the order of pole p;

- M+N= 2,2:1 m is the order of N(z)
- N= Z,il n; is the order of D(z)

— Hp is a multiplier constant
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Representation by Zero-Pole Plots cont'd

N(z) _ Holl7,(z —z)™

M) =bE) = P —p)

» The order of a discrete-time transfer function is the order of
N(z) or D(z), whichever is larger, i.e., M+ N if M >0 or N
if M =0.
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Representation by Zero-Pole Plots cont'd

2) — N(Z) B Ho H,'Zzl(z—z,-)’"f
H(z) = D(z)  [I%,(z—p)™

» The order of a discrete-time transfer function is the order of
N(z) or D(z), whichever is larger, i.e., M+ N if M >0 or N
if M =0.

» Discrete-time systems can be represented by zero-pole plots.
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Representation by Zero-Pole Plots cont'd

Jamz z plane

(@)
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Transfer Function in Nonrecursive Systems

» A nonrecursive system can be represented by the difference equation

N

y(nT) = Z aix(nT —iT)

i=0
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Transfer Function in Nonrecursive Systems

» A nonrecursive system can be represented by the difference equation

N

y(nT) = Z aix(nT —iT)

i=0

» Hence the transfer function assumes the form

Y(2) oy NS
X(z) = H(z) = ,Z:;a,z
_ Z,{V:o aizN~’
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Transfer Function in Nonrecursive Systems

» A nonrecursive system can be represented by the difference equation

N

y(nT) = Z aix(nT —iT)

i=0

» Hence the transfer function assumes the form

Y(2) oy NS
X(z) = H(z) = ,Z:;a,z
_ Z,{V:o aizN~’

» Evidently, the poles of nonrecursive systems are all located at the
origin of the z plane.
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Derivation of Transfer Function from a Network

» The unit delay, adder, and multiplier are characterized by the
equations

y(nT)=x(nT — T), ZX, (nT), y(nT)=mx(nT)
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Derivation of Transfer Function from a Network

» The unit delay, adder, and multiplier are characterized by the
equations

y(nT)=x(nT — T), ZX, (nT), y(nT)=mx(nT)
» Hence if we apply the z transform, we get

Y(z)=zX(2), Y(2)= ZX;(Z), Y(z) = mX(z2)
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Derivation of Transfer Function from a Network

» The unit delay, adder, and multiplier are characterized by the
equations

y(nT)=x(nT — T), ZX, (nT), y(nT)=mx(nT)

» Hence if we apply the z transform, we get

K

Y(z)=zX(2), Y(2)= ZX,'(Z), Y(z) = mX(z2)

i=1

» By using these relations, H(z) can be obtained directly from a
network representation.
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Example

Find the transfer function of the system:

W.(z)

D

X(z) o (—P o Y(7)

|~

®= =
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Example cont'd

W)
X() o @ - @ ° ¥(2)

@
S eI
B

&=

X

Solution By inspection
— 1_-1 1_-2
W(z) = X(z)+ 52" W(z) — 32 “W(z)

and
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and

Hence

W(z)= — )

= , Y(z)=(1+zHw
11z 14170 (z2) =(1+z27)W(2)

If we eliminate W(z) in the right-hand equation, we obtain

z(z+1)

H(z) = 2212
(2) 2-1z+1
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Derivation from a State-Space Representation

» A discrete-time system can be represented by the state-space
representation

q(nT + T) = Aq(nT) + bx(nT)

y(nT)=c"q(nT) + dx(nT)
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Derivation from a State-Space Representation

» A discrete-time system can be represented by the state-space
representation

q(nT + T) = Aq(nT) + bx(nT)
y(nT)=c"q(nT) + dx(nT)
» Applying the z transform to Eq. (A), we get
Zq(nT + T)=AZq(nT)+bZx(nT)
or zQ(z) = AQ(z) + bX(2)
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Derivation from a State-Space Representation

» A discrete-time system can be represented by the state-space
representation

q(nT + T) = Aq(nT) + bx(nT) (A)
y(nT)=c"q(nT) + dx(nT) (B)
» Applying the z transform to Eq. (A), we get

Zq(nT + T)=AZq(nT)+bZx(nT)

o 2Q(2) = AQ(2) + bX(2)
>

Hence z1Q(z) = AQ(z) + bX(z)

or Q(z) = (21 = A)'bX(2) (©)

where | is the identity matrix.
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Derivation from a State-Space Representation cont'd

q(nT + T) = Aq(nT) + bx(nT)
y(nT)=c"q(nT) +dx(nT)

or Q(z) = (z1 — A)'bX(2)

» Now from Eq. (B)

Y(z) =" Q(2) + dX(2)
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Derivation from a State-Space Representation cont'd
q(nT + T) = Aq(nT) + bx(nT)
y(nT)=c"q(nT) + dx(nT)

or Q(z2) = (21 - A)7'bX(2)

» Now from Eq. (B)
Y(z) =" Q(2) + dX(2)

» If we now eliminate Q(z) using Eq. (D), we have

Y(z) _ N(z)

H(z) = X(2) = D) =c’(zl-A)"'b+d =m

where N(z) and D(z) are polynomials in z.
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This slide concludes the presentation.
Thank you for your attention.
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