Chapter 5 APPLICATION OF TRANSFORM THEORY TO SYSTEMS
 5.1 Introduction

5.2 The Discrete-Time Transfer Function

Copyright © 2018 Andreas Antoniou
Victoria, BC, Canada
Email: aantoniou@ieee.org

July 10, 2018

Introduction

- Through the use of the z transform, a discrete-time system can be characterized by a discrete-time transfer function.

Introduction

- Through the use of the z transform, a discrete-time system can be characterized by a discrete-time transfer function.
- The discrete-time transfer function plays the same key role as the continuous-time transfer function in an analog system.

Introduction

- Through the use of the z transform, a discrete-time system can be characterized by a discrete-time transfer function.
- The discrete-time transfer function plays the same key role as the continuous-time transfer function in an analog system.
- It can be used to obtain the time-domain response of a system to any excitation or its frequency-domain response.

Introduction

- Through the use of the z transform, a discrete-time system can be characterized by a discrete-time transfer function.
- The discrete-time transfer function plays the same key role as the continuous-time transfer function in an analog system.
- It can be used to obtain the time-domain response of a system to any excitation or its frequency-domain response.
- In this presentation, the definition, derivation, and properties of the discrete-time transfer function are examined.

Discrete-Time Transfer Function

- The transfer function of a discrete-time system is the ratio of the z transforms of the response and the excitation.

Discrete-Time Transfer Function

- The transfer function of a discrete-time system is the ratio of the z transforms of the response and the excitation.
- Consider a linear time-invariant discrete-time system and let
$-x(n T)$ be the excitation (or input)
$-y(n T)$ be the response (or output)
- $h(n T)$ be the impulse response

Discrete-Time Transfer Function Cont'd

- The convolution summation gives

$$
y(n T)=\sum_{k=-\infty}^{\infty} x(k T) h(n T-k T)
$$

Discrete-Time Transfer Function Cont'd

- The convolution summation gives

$$
y(n T)=\sum_{k=-\infty}^{\infty} x(k T) h(n T-k T)
$$

- From the real-convolution theorem (see Chap. 4), we have

$$
\mathcal{Z} y(n T)=\mathcal{Z} x(n T) \mathcal{Z} h(n T)
$$

Discrete-Time Transfer Function Cont'd

- The convolution summation gives

$$
y(n T)=\sum_{k=-\infty}^{\infty} x(k T) h(n T-k T)
$$

- From the real-convolution theorem (see Chap. 4), we have

$$
\mathcal{Z} y(n T)=\mathcal{Z} x(n T) \mathcal{Z} h(n T)
$$

- Therefore,

$$
\frac{Y(z)}{X(z)}=H(z)
$$

In effect, the transfer function is also the z transform of the impulse response of the system.

Derivation of Transfer Function from Difference Eqn.

- A noncausal, linear, time-invariant, recursive discrete-time system can be represented by the difference equation

$$
y(n T)=\sum_{i=-M}^{N} a_{i} x(n T-i T)-\sum_{i=1}^{N} b_{i} y(n T-i T)
$$

where M and N are positive integers.

Derivation of Transfer Function from Difference Eqn.

- A noncausal, linear, time-invariant, recursive discrete-time system can be represented by the difference equation

$$
y(n T)=\sum_{i=-M}^{N} a_{i} x(n T-i T)-\sum_{i=1}^{N} b_{i} y(n T-i T)
$$

where M and N are positive integers.

- The z transform gives
$Y(z)=\mathcal{Z} y(n T)=\mathcal{Z} \sum_{i=-M}^{N} a_{i} x(n T-i T)-\mathcal{Z} \sum_{i=1}^{N} b_{i} y(n T-i T)$

Transfer Function from Difference Equation Cont'd

$$
Y(z)=\mathcal{Z} \sum_{i=-M}^{N} a_{i} x(n T-i T)-\mathcal{Z} \sum_{i=1}^{N} b_{i} y(n T-i T)
$$

Using the linearity and time-shifting theorems of the z transform, we get

$$
\begin{aligned}
Y(z) & =\sum_{i=-M}^{N} a_{i} z^{-i} \mathcal{Z} x(n T)-\sum_{i=1}^{N} b_{i} z^{-i} \mathcal{Z} y(n T) \\
& =\sum_{i=-M}^{N} a_{i} z^{-i} X(z)-\sum_{i=1}^{N} b_{i} z^{-i} Y(z)
\end{aligned}
$$

Transfer Function from Difference Equation Cont'd

$$
Y(z)=\sum_{i=-M}^{N} a_{i} z^{-i} X(z)-\sum_{i=1}^{N} b_{i} z^{-i} Y(z)
$$

Solving for $Y(z) / X(z)$ and then multiplying the numerator and denominator polynomials by z^{N}, we get

$$
\begin{aligned}
H(z) & =\frac{Y(z)}{X(z)}=\frac{\sum_{i=-M}^{N} a_{i} z^{-i}}{1+\sum_{i=1}^{N} b_{i} z^{-i}}=\frac{\sum_{i=-M}^{N} a_{i} z^{N-i}}{z^{N}+\sum_{i=1}^{N} b_{i} z^{N-i}} \\
& =\frac{a_{(-M)} z^{M+N}+a_{(-M+1)} z^{M+N-1}+\cdots+a_{N}}{z^{N}+b_{1} z^{N-1}+\cdots+b_{N}}
\end{aligned}
$$

Transfer Function from Difference Equation Cont'd

$$
H(z)=\frac{a_{(-M)} z^{M+N}+a_{(-M+1)} z^{M+N-1}+\cdots+a_{N}}{z^{N}+b_{1} z^{N-1}+\cdots+b_{N}}
$$

If $M=N=2$, we have

$$
H(z)=\frac{N(z)}{D(z)}=\frac{a_{(-2)} z^{4}+a_{(-1)} z^{3}+a_{0} z^{2}+a_{1} z+a_{2}}{z^{2}+b_{1} z+b_{2}}
$$

Transfer Function from Difference Equation Cont'd

$$
H(z)=\frac{a_{(-M)} z^{M+N}+a_{(-M+1)} z^{M+N-1}+\cdots+a_{N}}{z^{N}+b_{1} z^{N-1}+\cdots+b_{N}}
$$

If $M=N=2$, we have

$$
H(z)=\frac{N(z)}{D(z)}=\frac{a_{(-2)} z^{4}+a_{(-1)} z^{3}+a_{0} z^{2}+a_{1} z+a_{2}}{z^{2}+b_{1} z+b_{2}}
$$

Note: In noncausal systems, the degree of the numerator polynomial exceeds the degree of the denominator polynomial.

Transfer Function from Difference Equation Cont'd

- For a causal system, $M=0$ and hence

$$
\begin{aligned}
H(z) & =\frac{a_{(-M)} z^{M+N}+a_{(-M+1)} z^{M+N-1}+\cdots+a_{N}}{z^{N}+b_{1} z^{N-1}+\cdots+b_{N}} \\
& =\frac{a_{0} z^{N}+a_{1} z^{N-1}+\cdots+a_{N}}{z^{N}+b_{1} z^{N-1}+\cdots+b_{N}}
\end{aligned}
$$

Transfer Function from Difference Equation Cont'd

- For a causal system, $M=0$ and hence

$$
\begin{aligned}
H(z) & =\frac{a_{(-M)} z^{M+N}+a_{(-M+1)} z^{M+N-1}+\cdots+a_{N}}{z^{N}+b_{1} z^{N-1}+\cdots+b_{N}} \\
& =\frac{a_{0} z^{N}+a_{1} z^{N-1}+\cdots+a_{N}}{z^{N}+b_{1} z^{N-1}+\cdots+b_{N}}
\end{aligned}
$$

- Since some of the numerator coefficients can be zero, we conclude that in causal recursive systems the numerator degree is equal to or less than the denominator degree.

Representation by Zero-Pole Plots

- By factorizing the numerator and denominator polynomials, the transfer function of a noncausal system can be expressed as

$$
H(z)=\frac{N(z)}{D(z)}=\frac{H_{0} \prod_{i=1}^{z}\left(z-z_{i}\right)^{m_{i}}}{\prod_{i=1}^{P}\left(z-p_{i}\right)^{n_{i}}}
$$

where
$-z_{1}, z_{2}, \ldots, z_{z}$ are the zeros of $H(z)$

- $p_{1}, p_{2}, \ldots, p_{P}$ are the poles of $H(z)$
- m_{i} is the order of zero z_{i}
- n_{i} is the order of pole p_{i}
- $M+N=\sum_{i=1}^{Z} m_{i}$ is the order of $N(z)$
- $N=\sum_{i=1}^{P} n_{i}$ is the order of $D(z)$
- H_{0} is a multiplier constant

Representation by Zero-Pole Plots Cont'd

$$
H(z)=\frac{N(z)}{D(z)}=\frac{H_{0} \prod_{i=1}^{z}\left(z-z_{i}\right)^{m_{i}}}{\prod_{i=1}^{P}\left(z-p_{i}\right)^{n_{i}}}
$$

- The order of a discrete-time transfer function is the order of $N(z)$ or $D(z)$, whichever is larger, i.e., $M+N$ if $M>0$ or N if $M=0$.

Representation by Zero-Pole Plots Cont'd

$$
H(z)=\frac{N(z)}{D(z)}=\frac{H_{0} \prod_{i=1}^{z}\left(z-z_{i}\right)^{m_{i}}}{\prod_{i=1}^{P}\left(z-p_{i}\right)^{n_{i}}}
$$

- The order of a discrete-time transfer function is the order of $N(z)$ or $D(z)$, whichever is larger, i.e., $M+N$ if $M>0$ or N if $M=0$.
- Discrete-time systems can be represented by zero-pole plots.

Representation by Zero-Pole Plots Cont'd

Transfer Function in Nonrecursive Systems

- A nonrecursive system can be represented by the difference equation

$$
y(n T)=\sum_{i=0}^{N} a_{i} x(n T-i T)
$$

Transfer Function in Nonrecursive Systems

- A nonrecursive system can be represented by the difference equation

$$
y(n T)=\sum_{i=0}^{N} a_{i} x(n T-i T)
$$

- Hence the transfer function assumes the form

$$
\begin{aligned}
\frac{Y(z)}{X(z)}=H(z) & =\sum_{i=0}^{N} a_{i} z^{-i} \\
& =\frac{\sum_{i=0}^{N} a_{i} z^{N-i}}{z^{N}}
\end{aligned}
$$

Transfer Function in Nonrecursive Systems

- A nonrecursive system can be represented by the difference equation

$$
y(n T)=\sum_{i=0}^{N} a_{i} x(n T-i T)
$$

- Hence the transfer function assumes the form

$$
\begin{aligned}
\frac{Y(z)}{X(z)}=H(z) & =\sum_{i=0}^{N} a_{i} z^{-i} \\
& =\frac{\sum_{i=0}^{N} a_{i} z^{N-i}}{z^{N}}
\end{aligned}
$$

- Evidently, the poles of nonrecursive systems are all located at the origin of the z plane.

Derivation of Transfer Function from a Network

- The unit delay, adder, and multiplier are characterized by the equations

$$
y(n T)=x(n T-T), \quad y(n T)=\sum_{i=1}^{K} x_{i}(n T), \quad y(n T)=m x(n T)
$$

Derivation of Transfer Function from a Network

- The unit delay, adder, and multiplier are characterized by the equations

$$
y(n T)=x(n T-T), \quad y(n T)=\sum_{i=1}^{K} x_{i}(n T), \quad y(n T)=m x(n T)
$$

- Hence if we apply the z transform, we get

$$
Y(z)=z^{-1} X(z), \quad Y(z)=\sum_{i=1}^{K} X_{i}(z), \quad Y(z)=m X(z)
$$

Derivation of Transfer Function from a Network

- The unit delay, adder, and multiplier are characterized by the equations

$$
y(n T)=x(n T-T), \quad y(n T)=\sum_{i=1}^{K} x_{i}(n T), \quad y(n T)=m x(n T)
$$

- Hence if we apply the z transform, we get

$$
Y(z)=z^{-1} X(z), \quad Y(z)=\sum_{i=1}^{K} X_{i}(z), \quad Y(z)=m X(z)
$$

- By using these relations, $H(z)$ can be obtained directly from a network representation.

Example

Find the transfer function of the system:

Example Cont'd

Solution By inspection

$$
W(z)=X(z)+\frac{1}{2} z^{-1} W(z)-\frac{1}{4} z^{-2} W(z)
$$

and

$$
Y(z)=W(z)+z^{-1} W(z)
$$

Example Cont'd

$$
W(z)=X(z)+\frac{1}{2} z^{-1} W(z)-\frac{1}{4} z^{-2} W(z)
$$

and

$$
Y(z)=W(z)+z^{-1} W(z)
$$

Hence

$$
W(z)=\frac{X(z)}{1-\frac{1}{2} z^{-1}+\frac{1}{4} z^{-2}}, \quad Y(z)=\left(1+z^{-1}\right) W(z)
$$

If we eliminate $W(z)$ in the right-hand equation, we obtain

$$
H(z)=\frac{z(z+1)}{z^{2}-\frac{1}{2} z+\frac{1}{4}}
$$

Derivation from a State-Space Representation

- A discrete-time system can be represented by the state-space representation

$$
\begin{gather*}
\mathbf{q}(n T+T)=\mathbf{A q}(n T)+\mathbf{b} x(n T) \tag{A}\\
y(n T)=\mathbf{c}^{T} \mathbf{q}(n T)+d x(n T) \tag{B}
\end{gather*}
$$

Derivation from a State-Space Representation

- A discrete-time system can be represented by the state-space representation

$$
\begin{gather*}
\mathbf{q}(n T+T)=\mathbf{A q}(n T)+\mathbf{b} x(n T) \tag{A}\\
y(n T)=\mathbf{c}^{T} \mathbf{q}(n T)+d x(n T) \tag{B}
\end{gather*}
$$

- Applying the z transform to Eq. (A), we get

$$
\begin{gathered}
\mathcal{Z} \mathbf{q}(n T+T)=\mathbf{A} \mathcal{Z} \mathbf{q}(n T)+\mathbf{b} \mathcal{Z} \times(n T) \\
z \mathbf{Q}(z)=\mathbf{A Q}(z)+\mathbf{b} X(z)
\end{gathered}
$$

Derivation from a State-Space Representation

- A discrete-time system can be represented by the state-space representation

$$
\begin{gather*}
\mathbf{q}(n T+T)=\mathbf{A q}(n T)+\mathbf{b} x(n T) \tag{A}\\
y(n T)=\mathbf{c}^{T} \mathbf{q}(n T)+d x(n T) \tag{B}
\end{gather*}
$$

- Applying the z transform to Eq. (A), we get

$$
\begin{gathered}
\mathcal{Z} \mathbf{q}(n T+T)=\mathbf{A} \mathcal{Z} \mathbf{q}(n T)+\mathbf{b} \mathcal{Z} \times(n T) \\
z \mathbf{Q}(z)=\mathbf{A Q}(z)+\mathbf{b} X(z)
\end{gathered}
$$

Hence

$$
z \mathbf{I} \mathbf{Q}(z)=\mathbf{A} \mathbf{Q}(z)+\mathbf{b} X(z)
$$

$$
\begin{equation*}
\mathbf{Q}(z)=(z \mathbf{I}-\mathbf{A})^{-1} \mathbf{b} X(z) \tag{C}
\end{equation*}
$$

where \mathbf{I} is the identity matrix.

Derivation from a State-Space Representation Cont'd

$$
\begin{gather*}
\mathbf{q}(n T+T)=\mathbf{A} \mathbf{q}(n T)+\mathbf{b} \times(n T) \tag{A}\\
y(n T)=\mathbf{c}^{T} \mathbf{q}(n T)+d x(n T) \tag{B}\\
\mathbf{Q}(z)=(z \mathbf{I}-\mathbf{A})^{-1} \mathbf{b} X(z) \tag{C}
\end{gather*}
$$

- Now from Eq. (B)

$$
\begin{equation*}
Y(z)=\mathbf{c}^{\top} \mathbf{Q}(z)+d X(z) \tag{D}
\end{equation*}
$$

Derivation from a State-Space Representation Cont'd

$$
\begin{gather*}
\mathbf{q}(n T+T)=\mathbf{A} \mathbf{q}(n T)+\mathbf{b} \times(n T) \tag{A}\\
y(n T)=\mathbf{c}^{T} \mathbf{q}(n T)+d x(n T) \tag{B}\\
\mathbf{Q}(z)=(z \mathbf{I}-\mathbf{A})^{-1} \mathbf{b} X(z) \tag{C}
\end{gather*}
$$

- Now from Eq. (B)

$$
\begin{equation*}
Y(z)=\mathbf{c}^{\top} \mathbf{Q}(z)+d X(z) \tag{D}
\end{equation*}
$$

- If we now eliminate $\mathbf{Q}(z)$ using Eq. (D), we have

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{N(z)}{D(z)}=\mathbf{c}^{T}(z \mathbf{l}-\mathbf{A})^{-1} \mathbf{b}+d
$$

where $N(z)$ and $D(z)$ are polynomials in z.

This slide concludes the presentation. Thank you for your attention.

