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Stability

A discrete-time system is stable if and only if its impulse
response is absolutely summable, i.e.,

∞∑
n=0

|h(nT )| <∞

Since the transfer function is the z transform of the impulse
response, we expect the stability of the filter to depend
critically on the transfer function.

It actually depends exclusively on the positions of the poles.
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Stability Cont’d

Consider a causal recursive system characterized by the transfer
function

H(z) =
N(z)

D(z)
=

H0

∏M
i=1(z − zi )

mi∏N
i=1(z − pi )ni

where N ≥ M

The impulse response is given by the general inversion formula as

h(nT ) = Z−1H(z) =
1

2πj

∮
Γ

H(z)zn−1 dz

By using the residue theorem, we have

h(nT ) =

{
R0 +

∑N
i=1 res z=pi

[
H(z)z−1

]
for n = 0∑N

i=1 res z=pi [H(z)zn−1] for n > 0

where R0 = res z=0

[
H(z)

z

]
if H(z)/z has a pole at the origin and R0 = 0 otherwise.
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Stability Cont’d

If we assume that H(z) has simple poles, i.e., ni = 1 for
i = 1, 2, . . . , N, then the impulse response can be expressed
as

h(nT ) =

{
R0 +

∑N
i=1 p

−1
i res z=piH(z) for n = 0∑N

i=1 p
n−1
i res z=piH(z) for n > 0

where the ith term in the summations is the contribution to
the impulse response due to pole pi .
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Stability Cont’d

· · ·
h(nT ) =

{
R0 +

∑N
i=1 p

−1
i res z=piH(z) for n = 0∑N

i=1 p
n−1
i res z=piH(z) for n > 0

If we let
pi = rie

jψi

then the impulse response can be expressed as

h(nT ) =

{
h(0)∑N

i=1 r
n−1
i e j(n−1)ψi res z=piH(z) for n > 0

where

h(0) = R0 +
N∑
i=1

r−1
i e−jψi res z=piH(z) for n = 0

is finite.
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Stability Cont’d

· · ·

h(nT ) =

{
h(0)∑N

i=1 r
n−1
i e j(n−1)ψi res z=piH(z) for n > 0

We can now write

∞∑
n=0

|h(nT )| = |h(0)|+
∞∑
n=1

∣∣∣∣∣
N∑
i=1

rn−1
i e j(n−1)ψi res z=piH(z)

∣∣∣∣∣
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Stability Cont’d

We note that

N∑
i=1

|ith term| ≥

∣∣∣∣∣
N∑
i=1

ith term

∣∣∣∣∣
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Example

The sum of the magnitudes of the complex numbers is

3∑
i=1

|ci | = |(−1+j1)|+|(2+j2)|+|(2−j1)| =
√

2+
√

8+
√

5 = 6.479

c
1
=-1+j1

c
3
=2-j1

c
2
=2+j2

Complex plane
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Example Cont’d

On the other hand, the magnitude of the sum of the complex
numbers is given by∣∣∣∣∣

3∑
i=1

ci

∣∣∣∣∣ = |(−1 + j1) + (2 + j2) + (2− j1)| = |3 + j2| =
√

13 = 3.606

c
1
=-1+j1

c
3
=2-j1

c
2
=2+j2

Complex plane
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Example Cont’d

Therefore,
3∑

i=1

|ci | ≥

∣∣∣∣∣
3∑

i=1

ci

∣∣∣∣∣

c
1
=-1+j1

c
3
=2-j1

c
2
=2+j2

Complex plane

Frame # 10 Slide # 13 A. Antoniou Digital Filters – Sec. 5.3



Stability Cont’d

· · ·
∞∑
n=0

|h(nT )| = |h(0)|+
∞∑
n=1

∣∣∣∣∣
N∑
i=1

rn−1
i e j(n−1)ψi res z=piH(z)

∣∣∣∣∣
Thus we can write

∞∑
n=0

|h(nT )| ≤ |h(0)|+
∞∑
n=1

N∑
i=1

∣∣∣rn−1
i e j(n−1)ψi res z=piH(z)

∣∣∣
≤ |h(0)|+

∞∑
n=1

N∑
i=1

∣∣rn−1
i

∣∣ ∣∣∣e j(n−1)ψi

∣∣∣ |res z=piH(z)|

≤ |h(0)|+
∞∑
n=1

N∑
i=1

rn−1
i |res z=piH(z)|
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Stability Cont’d

Let us assume that all the poles are inside the unit circle
|z | = 1, i.e.,

ri ≤ rmax < 1 for i = 1, 2, . . . , N

z plane  

 

1

Re z

 jIm z

rmax
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Stability Cont’d

Now if pk is a simple pole of some function F (z), then
function (z − pk)F (z) is analytic and, therefore, the residue of
F (z) at z = pk is finite.

Consequently, all the residues of H(z) are finite and so

|res z=piH(z)| ≤ Rmax for i = 1, 2, . . . , N

where Rmax is a positive constant.
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Stability Cont’d

From the previous two slides

ri ≤ rmax < 1 for i = 1, 2, . . . , N

and
|res z=piH(z)| ≤ Rmax for i = 1, 2, . . . , N

Therefore, we can write

∞∑
n=0

|h(nT )| ≤ |h(0)|+
∞∑
n=1

N∑
i=1

rn−1
i |res z=piH(z)|

≤ |h(0)|+ NRmax

∞∑
n=1

rn−1
max
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Stability Cont’d
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Stability Cont’d

· · ·
∞∑
n=0

|h(nT )| ≤ |h(0)|+ NRmax

∞∑
n=1

rn−1
max

The sum at the right-hand side is a geometric series with
common ratio rmax and since we have assumed that rmax < 1,
the series converges.

We, therefore, conclude that

∞∑
n=0

|h(nT )| <∞
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Stability Cont’d
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Stability Cont’d

Summarizing, we have assumed that all the poles are inside
the unit circle, i.e.,

ri ≤ rmax < 1 for i = 1, 2, . . . , N

and demonstrated that in such a case the impulse response is
absolutely summable, i.e.,

∞∑
n=0

|h(nT )| <∞

Therefore, we conclude that if all the poles are inside the unit
circle, the system is stable.
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Stability Cont’d

One more thing needs to be done in order to fully establish
the role of the pole positions on the stability of the system.

The condition established so far is a sufficient condition and
one may, therefore, ask: Is it possible for a system to be stable
if one or more poles are located on or outside the unit circle?
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Stability Cont’d

Let us assume that a single pole of H(z), say pole pk , is
located on or outside the unit circle, i.e., rk ≥ 1.

In such a case, as n→∞ we have

h(nT ) =
N∑
i=1

rn−1
i e j(n−1)ψi res z=piH(z)

≈ rn−1
k e j(n−1)ψk res z=pkH(z)

since for a large value of n, rn−1
i → 0 for all i 6= k for which

ri < 1 whereas rn−1
k is unity or becomes very large since

rk ≥ 1.
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Stability Cont’d

Thus

∞∑
n=0

|h(nT )| ≈
∞∑
n=0

rn−1
k

∣∣∣e j(n−1)ψi

∣∣∣ |res z=pkH(z)|

≈ |res z=pkH(z)|
∞∑
n=0

rn−1
k

Since rk ≥ 1, the sum at the right-hand side does not
converge, i.e., the impulse response is not absolutely
summable, i.e.,

∞∑
n=0

|h(nT )| → ∞

and the system is unstable.
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Stability Cont’d

Therefore, we conclude that a discrete-time system is stable if and
only if all its poles are inside the unit circle of the z plane.

z plane  

Region of 
stability

Regions of 
instability

1

Re z

 jIm z

Note: Nonrecursive discrete-time systems are always stable since

their poles are always located at the origin of the z plane.
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Example

Check the following system for stability:

−1

− 1

2

Y(z)X(z)
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Example Cont’d

Solution The transfer function of the system can be easily
obtained as

H(z) =
z2 − z + 1

z2 − z + 0.5

=
z2 − z + 1

(z − p1)(z − p2)

where
p1, p2 = 1

2 ± j 1
2 = 1√

2
e±jπ/4

Since
|p1|, |p2| < 1

the system is stable.
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Stability Criteria

Stability criteria are simple techniques that can be used to
determine whether a system is stable or unstable with minimal
computational effort.

Consider a system characterized by the transfer function

H(z) =
N(z)

D(z)

where

N(z) =
M∑
i=0

aiz
M−i and D(z) =

N∑
i=0

biz
N−i
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Stability Criteria Cont’d

As was demonstrated in previous slides, the stability of a
discrete-time system can be determined by finding the poles
of the transfer function, namely, the roots of the denominator
polynomial D(z).

For a second- or a third-order system this is easily done.

For higher-order systems, we need to use a computer program
that would evaluate the roots of a polynomial, for example,
MATLAB.

Alternatively, we can use one of several stability criteria.
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Stability Criteria Cont’d

Common factors in N(z) and D(z) do not have anything to
do with stability because they can be canceled out.

For example, if N(z) and D(z) have a common factor
(z + w), then

H(z) =
N(z)

D(z)
=

(z + w)N ′(z)

(z + w)D ′(z)
=

N ′(z)

D ′(z)

In effect, the poles of H(z) are the roots of D ′(z) and
parameter w will not appear in the impulse response.
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Test for Common Factors

If there are common factors, they must be removed.

To test a transfer function

H(z) =
N(z)

D(z)
=

∑M
i=0 aiz

M−i∑N
i=0 biz

N−i

for common factors, an (M + N)× (M + N) matrix is constructed
and its determinant is evaluated where M and N are the numerator
and denominator degrees, respectively.

If the determinant of this matrix is zero, then there are common
factors. (See Sec. 5.3.4 of textbook for details.)

Hereafter, we assume that N(z) and D(z) do not have any common
factors.
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Stability Cont’d

The classical stability criteria for continuous-time systems are
the Nyquist and Routh-Hurwitz criteria.

Corresponding criteria that can be used to check the stability
of discrete-time systems and digital filters are the following:

– Schur-Cohn criterion (1922)
– Schur-Cohn-Fujiwara criterion (1925)
– Jury-Marden criterion (1962)
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Stability Cont’d
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Schur-Cohn Stability Criterion

For an Nth-order system, N matrices of dimensions ranging
from 2× 2 to 2N × 2N are constructed using the coefficients
of D(z).

The determinants of these matrices, say, D1, D2, . . . , DN , are
computed and their signs are determined.

The system is stable if and only if

Dk < 0 for odd k and Dk > 0 for even k
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Schur-Cohn-Fujiwara Stability Criterion

The Schur-Cohn-Fujiwara criterion is much more efficient.

It involves only one matrix of dimension N × N, which is
again constructed using the coefficients of D(z).

The test amounts to checking whether the matrix is positive
definite.

This is based on the Schur-Cohn criterion.
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Jury-Marden Stability Criterion

The Jury-Marden criterion is the most efficient of the three
criteria.

It involves the computation of a number of 2× 2
determinants.

This is also based on the Schur-Cohn criterion.
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Jury-Marden Stability Criterion Cont’d

Assumptions:

– The denominator of the transfer function is given by

D(z) =
N∑
i=0

biz
N−i

where b0 > 0.

– The numerator and denominator polynomials of the transfer
function, N(z) and D(z), do not have any common factors.

The first assumption that b0 > 0 simplifies the Jury-Marden
stability criterion but it is not a limitation.

Frame # 31 Slide # 60 A. Antoniou Digital Filters – Sec. 5.3



Jury-Marden Stability Criterion Cont’d

Assumptions:

– The denominator of the transfer function is given by

D(z) =
N∑
i=0

biz
N−i

where b0 > 0.

– The numerator and denominator polynomials of the transfer
function, N(z) and D(z), do not have any common factors.

The first assumption that b0 > 0 simplifies the Jury-Marden
stability criterion but it is not a limitation.

Frame # 31 Slide # 61 A. Antoniou Digital Filters – Sec. 5.3



Jury-Marden Stability Criterion Cont’d

Assumptions:

– The denominator of the transfer function is given by

D(z) =
N∑
i=0

biz
N−i

where b0 > 0.

– The numerator and denominator polynomials of the transfer
function, N(z) and D(z), do not have any common factors.

The first assumption that b0 > 0 simplifies the Jury-Marden
stability criterion but it is not a limitation.

Frame # 31 Slide # 62 A. Antoniou Digital Filters – Sec. 5.3
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Assumptions:
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biz
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Jury-Marden Stability Criterion Cont’d

If b0 < 0 then we can multiply the numerator and
denominator polynomials by −1 to get a positive b0.

This does not change the pole positions.

For example, if

H(z) =
N(z)

D(z)
=

z2 + 2z + 1

−2z2 + 0.8z − 0.4

we can write

H(z) =
(z2 + 2z + 1)(−1)

(−2z2 + 0.8z − 0.4)(−1)
=
−z2 − 2z − 1

2z2 − 0.8z + 0.4
=

N ′(z)

D ′(z)

where D ′(z) has a positive b0.
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Jury-Marden Stability Criterion Cont’d

Row Coefficients

1 b0 b1 b2 b3 · · · bN−2 bN−1 bN
2 bN bN−1 bN−2 bN−3 · · · b2 b1 b0

3 c0 c1 c2 · · · cN−3 cN−2 cN−1

4 cN−1 cN−2 cN−3 · · · c2 c1 c0

5 d0 d1 d2 · · · dN−3 dN−2

6 dN−2 dN−3 dN−4 · · · d1 d0

...
...

...
...

...
2N - 3 r0 r1 r2

where

ci =

∣∣∣∣ bi bN
bN−i b0

∣∣∣∣ =

∣∣∣∣ b0 bN−i

bN bi

∣∣∣∣ for 0, 1, . . . , N − 1

di =

∣∣∣∣ ci cN−1

cN−1−i c0

∣∣∣∣ =

∣∣∣∣ c0 cN−1−i

cN−1 ci

∣∣∣∣ for 0, 1, . . . , N − 2
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Jury-Marden Stability Criterion Cont’d

The Jury-Marden stability criterion states that polynomial
D(z) has roots inside the unit circle of the z plane (i.e., the
filter is stable) if and only if the following conditions are
satisfied:

(i)
D(1) > 0

(ii)
(−1)ND(−1) > 0

(iii)

b0 > |bN |
|c0| > |cN−1|
|d0| > |dN−2|

...
...

|r0| > |r2|
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Example

A discrete-time system is characterized by the transfer function

H(z) =
z4

4z4 + 3z3 + 2z2 + z + 1

Check the filter for stability.

Solution The denominator polynomial of the transfer function is
given by

D(z) = 4z4 + 3z3 + 2z2 + z + 1

Since
D(1) = 11 > 0 and (−1)4D(−1) = 3 > 0

conditions (i) and (ii) of the test are satisfied.
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Example Cont’d

Jury-Marden array:

Row Coefficients

1 4 3 2 1 1
2 1 1 2 3 4

3 15 11 6 1
4 1 6 11 15

5 224 159 79

Since
b0 > |b4|, |c0| > |c3|, |d0| > |d2|

condition (iii) is also satisfied and the filter is stable.
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Example

A discrete-time system is characterized by the transfer function

H(z) =
z2 + 2z + 1

z4 + 6z3 + 3z2 + 4z + 5

Check the filter for stability.

Solution The denominator polynomial of the transfer function is given

D(z) = z4 + 6z3 + 3z2 + 4z + 5

In this example,
(−1)4D(−1) = −1

Therefore, condition (ii) of the test is violated and the filter is
unstable.

Note: Note that there is no need to construct the Jury-Marden array!
Violating only one of the conditions is enough to demonstrate that the
filter is unstable.
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This slide concludes the presentation.

Thank you for your attention.
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