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through the use of mathematical induction or on the basis of
the state-space representation.

% Previous presentations dealt with time-domain analysis
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the state-space representation.
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Previous presentations dealt with time-domain analysis
through the use of mathematical induction or on the basis of
the state-space representation.

Although the induction method is rather intuitive, it runs into
serious difficulties when the system order is increased to two
or higher.

The state-space approach, on the other hand, yields solutions
in the form of infinite summations rather than in terms of
closed-form solutions.

The z transform approach overcomes these difficulties and it
is, therefore, the preferred approach.



% As is shown earlier, a discrete-time system with excitation
x(nT), response y(nT), and impulse response h(nT) is
characterized by the equation

Y(z) = H(z)X(z2)
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% As is shown earlier, a discrete-time system with excitation
x(nT), response y(nT), and impulse response h(nT) is
characterized by the equation

Y(z) = H(z)X(z2)

% Therefore, the response produced by an arbitrary excitation
can be readily obtained as

y(nT) = Z7[H(2)X(2)]
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% As is shown earlier, a discrete-time system with excitation
x(nT), response y(nT), and impulse response h(nT) is
characterized by the equation

Y(z) = H(z)X(z2)

% Therefore, the response produced by an arbitrary excitation
can be readily obtained as

y(nT) = Z[H(2)X(2)]
% The inverse z transform can be obtained by using any one of
the standard inversion techniques described in Chap. 4.
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A discrete-time system is characterized by the transfer function

H(z) =

2—z+1

(z=p1)(z—p2)

where

pr,p2=75+]
Find the unit-step response.
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Solution The response of the system is given by
y(nT) = 27 [H(2)X(2)]
The z transform of the input is given by

X(z) = Z2Zu(nT) =
Expanding H(z)X(z)/z into partial fractions gives

z

z—1
H(2)X(2) = 0%
where Ry = 2,

Rz
Rl — %e—j5w/4,

+ 4 fez
-1 (z—p) (z—p2)

and Rp = R} =
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X(z) =

Zu(nT)
Expanding H(z)X(z)/z into partial fractions gives

Solution The response of the system is given by
y(nT) = 27 [H(2)X(2)]
The z transform of the input is given by

H(z)X(2)

-1
Roz Rz
where R() =2 Rl

(z = p2)
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Ryz
+
(z—p1)
—_/57r/4
From the table of standard z transforms, we have
y

and Ry =R} = Lef/4



1

Bampecns
y(nT) = 2u(nT) + u(nT) <%eiw/4)n
+u(nT) <%e_j7r/4>

—j5m/4
V2
1
—=eT/t
V2
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ei'”/“’)n . Le

—j57/4
V2
=2u(nT)+

Eamplecnd
y(nT) = 2u(nT) + u(nT) (\%
+u(nT) <%e—fﬂ/4>n
1

1 .
. _e157r/4
V2

= u(n-,-)(ej(n—5)7r/4 + e—j(n—5)7r/4)
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ei'”/“’) . Le

V2
=2u(nT)+

Eamplecnd
y(nT) = 2u(nT) + u(nT) (\%
+u(nT) <%e‘jﬂ/4>n

—j57/4
1 .
. _e157r/4
V2
Lt
Vv2)"
=2u(nT)+

— u(n-,-)(ej(n—5)7r/4 + e—j(n—5)7r/4)

—zu(nT)cos [(n - 5)%} ]
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Y(HT) = 2U(nT) N

g7 ees [(n-5)7

ik

24
y(nT)
1.8 -
1.2
0.6 ‘
0
nT

Unit-step response
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A discrete-time system is characterized by the transfer function

H(z) =

2—z+1

(z=p1)(z—p2)

where

1
pL, p2=35=+]J
Find the response of the system to a sinusoidal excitation

x(nT)=u(nT)sinwnT
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Solution The response of the system is given by
y(nT) = Z7[H(2)X(2)]
The z transform of the input is given by

X(z) = Z[u(nT)sinwnT] =

zsinwT
72 —2zcoswT +1
- zsinwT
- (z— e*T)(z — e4T)
and hence
2

— 1

H()X(2)z" ! = 227
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2 _
H(Z)X(2) 2t = 2 =21

n

. sinwT .
(z=p)(z=p2) (z—e¥T)(z—ewT)

Since the system is causal y(nT) = 0 for n < 0 and hence the
general inversion formula gives
y(nT) = u(nT)[R1 + R+ R3+ R4]

where Ry, R», R3, and Ry are the residues of H(z)X(z)z"! at
poles p1, po, p3 = &7, and ps = /T, respectively.

The residues can be evaluated as shown in the next three slides.
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o1 22—z41 ‘ sinwT g
X ) = o) —p) e= e )z — T

Ry — lim [zz—z—i—l_ .sian . -z"]
B Gom oo —e )
_ p? —p1+1 sinwT n
a [ (pr—p2) (P —&*T)(pr—e 7). pl]

= pw)e? (\%) &4 = p(w) (\%) ol /4 (w)]

) p?—p1+1 sinwT
w) = . . .
where P (pr—p2)  (p1— e=T)(pr— e J=T)
) .
pr—pL+1 sinwT ]
w) = ar . . .
vl) = e [ (pr=p2)  (pr—eT)(pr—eeT)
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HX (D)o = 2 =2 +] sinwT .

z-p)z—p) (z—e*T)(z—eT) *

Ry = RF = p(w) (%)" el /4+ (@)
Ry = lim [H(z)X(2)z""]
z=el¥

sinwT

_ jowT jnw T
= H(e™) o — ey &
1 ) )
_ e/wT e;an
2 M)
* 1 —jw —jnw
Ry = R; = —2—J_H(e JwuTye=jnwT
=} = = E E DHAC
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Ry = j

o) ()", Ry = plw) ()
Rs

" e—j[n7r/4+1[;(w)]

%H(eij)ejan’ R4 _ _l.H(e—ij)e—jan
-
If we now let

H(e“T) = M(w)e”@)  then H(e*T) = M(w)e ™«
and so

y(0T) = u(nT) [p(w) (&) /4N 1 p() (Z5) " edlom/asete
+2le(w)eje(w)ejan _ M(w)e—ja(w)e—jan}
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y(nT) = u(nT) [p(W) <%> /A 4 p(w) (%) ol /44 p(w)]
+%M(w)eﬂ9(w) ejan o i M(w)e—je(w)e—jan}

(nT){ p(w) (ﬁ) [0 4 giton/asviel]
—l—/\/l(w)% [ej[nwne(w)] _ e—j[an+0(w)]] }
-J

= w1 o) (&) coslE + ()
+M(w)sin[nwT + H(w)]} -

The cosine term is a transient component that tends to zero as n — oo

whereas the sine term represents the steady-state response of the system.
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This slide concludes the presentation.
Thank you for your attention.
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