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Introduction

F Previous presentations dealt with time-domain analysis
through the use of mathematical induction or on the basis of
the state-space representation.

F Although the induction method is rather intuitive, it runs into
serious difficulties when the system order is increased to two
or higher.

F The state-space approach, on the other hand, yields solutions
in the form of infinite summations rather than in terms of
closed-form solutions.

F The z transform approach overcomes these difficulties and it
is, therefore, the preferred approach.
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Time-Domain Analysis

F As is shown earlier, a discrete-time system with excitation
x(nT ), response y(nT ), and impulse response h(nT ) is
characterized by the equation

Y (z) = H(z)X (z)

F Therefore, the response produced by an arbitrary excitation
can be readily obtained as

y(nT ) = Z−1[H(z)X (z)]

F The inverse z transform can be obtained by using any one of
the standard inversion techniques described in Chap. 4.
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Example

A discrete-time system is characterized by the transfer function

H(z) =
z2 − z + 1

(z − p1)(z − p2)

where

p1, p2 = 1
2 ± j 12 =

1√
2
e±jπ/4

Find the unit-step response.
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Example Cont’d

Solution The response of the system is given by

y(nT ) = Z−1[H(z)X (z)]

The z transform of the input is given by

X (z) = Zu(nT ) =
z

z − 1

Expanding H(z)X (z)/z into partial fractions gives

H(z)X (z) =
R0z

z − 1
+

R1z

(z − p1)
+

R2z

(z − p2)

where R0 = 2, R1 = 1√
2
e−j5π/4, and R2 = R∗1 = 1√

2
e j5π/4.

From the table of standard z transforms, we have

y(nT ) = 2u(nT ) + u(nT )

(
1√
2
e jπ/4

)n

· 1√
2
e−j5π/4
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Example Cont’d

· · ·
y(nT ) = 2u(nT ) + u(nT )

(
1√
2
e jπ/4

)n

· 1√
2
e−j5π/4

+u(nT )

(
1√
2
e−jπ/4

)n

· 1√
2
e j5π/4

= 2u(nT ) +
1(√

2
)n+1

u(nT )(e j(n−5)π/4 + e−j(n−5)π/4)

= 2u(nT ) +
1(√

2
)n−1 u(nT ) cos

[
(n − 5)

π

4

]
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Example Cont’d
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Example Cont’d

· · ·
y(nT ) = 2u(nT ) +

1(√
2
)n−1 u(nT ) cos

[
(n − 5)

π

4

]

nT

0.6

0

1.2

1.8

2.4

y(nT )

Unit-step response
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Example

A discrete-time system is characterized by the transfer function

H(z) =
z2 − z + 1

(z − p1)(z − p2)

where

p1, p2 = 1
2 ± j 12 =

1√
2
e±jπ/4

Find the response of the system to a sinusoidal excitation

x(nT ) = u(nT ) sinωnT
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Example Cont’d

Solution The response of the system is given by

y(nT ) = Z−1[H(z)X (z)]

The z transform of the input is given by

X (z) = Z[u(nT ) sinωnT ] =
z sinωT

z2 − 2z cosωT + 1

=
z sinωT

(z − e jωT )(z − e−jωT )

and hence

H(z)X (z)zn−1 =
z2 − z + 1

(z − p1)(z − p2)
· z sinωT

(z − e jωT )(z − e−jωT )
· zn−1

=
z2 − z + 1

(z − p1)(z − p2)
· sinωT

(z − e jωT )(z − e−jωT )
· zn
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Example Cont’d

· · ·
H(z)X (z)zn−1 =

z2 − z + 1

(z − p1)(z − p2)
· sinωT

(z − e jωT )(z − e−jωT )
· zn

Since the system is causal y(nT ) = 0 for n < 0 and hence the
general inversion formula gives

y(nT ) = u(nT )[R1 + R2 + R3 + R4]

where R1, R2, R3, and R4 are the residues of H(z)X (z)zn−1 at
poles p1, p2, p3 = e jωT , and p4 = e jωT , respectively.

The residues can be evaluated as shown in the next three slides.

Frame # 10 Slide # 18 A. Antoniou Digital Filters – Sec. 5.4



Example Cont’d

· · ·
H(z)X (z)zn−1 =

z2 − z + 1

(z − p1)(z − p2)
· sinωT

(z − e jωT )(z − e−jωT )
· zn

R1 = lim
z=p1

[
z2 − z + 1

(z − p2)
· sinωT

(z − e jωT )(z − e−jωT )
· zn
]

=

[
p21 − p1 + 1

(p1 − p2)
· sinωT

(p1 − e jωT )(p1 − e−jωT )
· pn1
]

= ρ(ω)e jψ(ω)
(

1√
2

)n
e jnπ/4 = ρ(ω)

(
1√
2

)n
e j[nπ/4+ψ(ω)]

where ρ(ω) =

∣∣∣∣p21 − p1 + 1

(p1 − p2)
· sinωT

(p1 − e jωT )(p1 − e−jωT )

∣∣∣∣
ψ(ω) = arg

[
p21 − p1 + 1

(p1 − p2)
· sinωT

(p1 − e jωT )(p1 − e−jωT )

]
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Example Cont’d

· · ·
H(z)X (z)zn−1 =

z2 − z + 1

(z − p1)(z − p2)
· sinωT

(z − e jωT )(z − e−jωT )
· zn

R2 = R∗1 = ρ(ω)
(

1√
2

)n
e−j[nπ/4+ψ(ω)]

R3 = lim
z=e jωT

[H(z)X (z)zn−1]

= H(e jωT ) · sinωT

(e jωT − e−jωT )
· e jnωT

=
1

2j
H(e jωT )e jnωT

R4 = R∗3 = − 1

2j
H(e−jωT )e−jnωT
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Example Cont’d

· · ·
R1 = ρ(ω)

(
1√
2

)n
e j[nπ/4+ψ(ω)], R2 = ρ(ω)

(
1√
2

)n
e−j[nπ/4+ψ(ω)]

R3 =
1

2j
H(e jωT )e jnωT , R4 = − 1

2j
H(e−jωT )e−jnωT

If we now let

H(e jωT ) = M(ω)e jθ(ω) then H(e−jωT ) = M(ω)e−jθ(ω)

and so

y(nT ) = u(nT )
[
ρ(ω)

(
1√
2

)n
e j[nπ/4+ψ(ω)] + ρ(ω)

(
1√
2

)n
e−j[nπ/4+ψ(ω)]

+
1

2j
M(ω)e jθ(ω)e jnωT − 1

2j
M(ω)e−jθ(ω)e−jnωT

]
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Example Cont’d

· · ·
y(nT ) = u(nT )

[
ρ(ω)

(
1√
2

)n
e j[nπ/4+ψ(ω)] + ρ(ω)

(
1√
2

)n
e−j[nπ/4+ψ(ω)]

+
1

2j
M(ω)e jθ(ω)e jnωT − 1

2j
M(ω)e−jθ(ω)e−jnωT

]
= u(nT )

{
ρ(ω)

(
1√
2

)n [
e j[nπ/4+ψ(ω)] + e−j[nπ/4+ψ(ω)]

]
+M(ω)

1

2j

[
e j[nωT+θ(ω)] − e−j[nωT+θ(ω)]

]}
= u(nT )

{
ρ(ω)

(
1√
2

)n−2
cos[ nπ4 + ψ(ω)]

+M(ω) sin[nωT + θ(ω)]
}

The cosine term is a transient component that tends to zero as n→∞
whereas the sine term represents the steady-state response of the system.
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This slide concludes the presentation.

Thank you for your attention.
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