Chapter 5
 APPLICATION OF TRANSFORM THEORY TO SYSTEMS 5.4 Time-Domain Analysis

Copyright (c) 2018 Andreas Antoniou Victoria, BC, Canada
Email: aantoniou@ieee.org

July 10, 2018

* Previous presentations dealt with time-domain analysis through the use of mathematical induction or on the basis of the state-space representation.
* Previous presentations dealt with time-domain analysis through the use of mathematical induction or on the basis of the state-space representation.
\star Although the induction method is rather intuitive, it runs into serious difficulties when the system order is increased to two or higher.
* Previous presentations dealt with time-domain analysis through the use of mathematical induction or on the basis of the state-space representation.
\star Although the induction method is rather intuitive, it runs into serious difficulties when the system order is increased to two or higher.

The state-space approach, on the other hand, yields solutions in the form of infinite summations rather than in terms of closed-form solutions.
\star Previous presentations dealt with time-domain analysis through the use of mathematical induction or on the basis of the state-space representation.
\star Although the induction method is rather intuitive, it runs into serious difficulties when the system order is increased to two or higher.

The state-space approach, on the other hand, yields solutions in the form of infinite summations rather than in terms of closed-form solutions.
\star The z transform approach overcomes these difficulties and it is, therefore, the preferred approach.
\star As is shown earlier, a discrete-time system with excitation $x(n T)$, response $y(n T)$, and impulse response $h(n T)$ is characterized by the equation

$$
Y(z)=H(z) X(z)
$$

\star As is shown earlier, a discrete-time system with excitation $x(n T)$, response $y(n T)$, and impulse response $h(n T)$ is characterized by the equation

$$
Y(z)=H(z) X(z)
$$

\star Therefore, the response produced by an arbitrary excitation can be readily obtained as

$$
y(n T)=\mathcal{Z}^{-1}[H(z) X(z)]
$$

\star As is shown earlier, a discrete-time system with excitation $x(n T)$, response $y(n T)$, and impulse response $h(n T)$ is characterized by the equation

$$
Y(z)=H(z) X(z)
$$

\star Therefore, the response produced by an arbitrary excitation can be readily obtained as

$$
y(n T)=\mathcal{Z}^{-1}[H(z) X(z)]
$$

* The inverse z transform can be obtained by using any one of the standard inversion techniques described in Chap. 4.

Example

A discrete-time system is characterized by the transfer function

$$
H(z)=\frac{z^{2}-z+1}{\left(z-p_{1}\right)\left(z-p_{2}\right)}
$$

where

$$
p_{1}, p_{2}=\frac{1}{2} \pm j \frac{1}{2}=\frac{1}{\sqrt{2}} e^{ \pm j \pi / 4}
$$

Find the unit-step response.

Example Cont'd

Solution The response of the system is given by

$$
y(n T)=\mathcal{Z}^{-1}[H(z) X(z)]
$$

The z transform of the input is given by

$$
X(z)=\mathcal{Z} u(n T)=\frac{z}{z-1}
$$

Expanding $H(z) X(z) / z$ into partial fractions gives

$$
H(z) X(z)=\frac{R_{0} z}{z-1}+\frac{R_{1} z}{\left(z-p_{1}\right)}+\frac{R_{2} z}{\left(z-p_{2}\right)}
$$

where $R_{0}=2, \quad R_{1}=\frac{1}{\sqrt{2}} e^{-j 5 \pi / 4}, \quad$ and $\quad R_{2}=R_{1}^{*}=\frac{1}{\sqrt{2}} e^{j 5 \pi / 4}$.

Example Cont'd

Solution The response of the system is given by

$$
y(n T)=\mathcal{Z}^{-1}[H(z) X(z)]
$$

The z transform of the input is given by

$$
X(z)=\mathcal{Z} u(n T)=\frac{z}{z-1}
$$

Expanding $H(z) X(z) / z$ into partial fractions gives

$$
H(z) X(z)=\frac{R_{0} z}{z-1}+\frac{R_{1} z}{\left(z-p_{1}\right)}+\frac{R_{2} z}{\left(z-p_{2}\right)}
$$

where $R_{0}=2, \quad R_{1}=\frac{1}{\sqrt{2}} e^{-j 5 \pi / 4}, \quad$ and $\quad R_{2}=R_{1}^{*}=\frac{1}{\sqrt{2}} e^{j 5 \pi / 4}$.
From the table of standard z transforms, we have

$$
y(n T)=2 u(n T)+u(n T)\left(\frac{1}{\sqrt{2}} e^{j \pi / 4}\right)^{n} \cdot \frac{1}{\sqrt{2}} e^{-j 5 \pi / 4}
$$

Example Cont'd

$$
\begin{aligned}
y(n T)= & 2 u(n T)+u(n T)\left(\frac{1}{\sqrt{2}} e^{j \pi / 4}\right)^{n} \cdot \frac{1}{\sqrt{2}} e^{-j 5 \pi / 4} \\
& +u(n T)\left(\frac{1}{\sqrt{2}} e^{-j \pi / 4}\right)^{n} \cdot \frac{1}{\sqrt{2}} e^{j 5 \pi / 4}
\end{aligned}
$$

Example Cont'd

$$
\begin{aligned}
y(n T)= & 2 u(n T)+u(n T)\left(\frac{1}{\sqrt{2}} e^{j \pi / 4}\right)^{n} \cdot \frac{1}{\sqrt{2}} e^{-j 5 \pi / 4} \\
& +u(n T)\left(\frac{1}{\sqrt{2}} e^{-j \pi / 4}\right)^{n} \cdot \frac{1}{\sqrt{2}} e^{j 5 \pi / 4} \\
= & 2 u(n T)+\frac{1}{(\sqrt{2})^{n+1}} u(n T)\left(e^{j(n-5) \pi / 4}+e^{-j(n-5) \pi / 4}\right)
\end{aligned}
$$

Example Cont'd

$$
\begin{aligned}
y(n T)= & 2 u(n T)+u(n T)\left(\frac{1}{\sqrt{2}} e^{j \pi / 4}\right)^{n} \cdot \frac{1}{\sqrt{2}} e^{-j 5 \pi / 4} \\
& +u(n T)\left(\frac{1}{\sqrt{2}} e^{-j \pi / 4}\right)^{n} \cdot \frac{1}{\sqrt{2}} e^{j 5 \pi / 4} \\
= & 2 u(n T)+\frac{1}{(\sqrt{2})^{n+1}} u(n T)\left(e^{j(n-5) \pi / 4}+e^{-j(n-5) \pi / 4}\right) \\
= & 2 u(n T)+\frac{1}{(\sqrt{2})^{n-1}} u(n T) \cos \left[(n-5) \frac{\pi}{4}\right]
\end{aligned}
$$

Example Cont'd

$$
y(n T)=2 u(n T)+\frac{1}{(\sqrt{2})^{n-1}} u(n T) \cos \left[(n-5) \frac{\pi}{4}\right]
$$

Example

A discrete-time system is characterized by the transfer function

$$
H(z)=\frac{z^{2}-z+1}{\left(z-p_{1}\right)\left(z-p_{2}\right)}
$$

where

$$
p_{1}, p_{2}=\frac{1}{2} \pm j \frac{1}{2}=\frac{1}{\sqrt{2}} e^{ \pm j \pi / 4}
$$

Find the response of the system to a sinusoidal excitation

$$
x(n T)=u(n T) \sin \omega n T
$$

Example Cont'd

Solution The response of the system is given by

$$
y(n T)=\mathcal{Z}^{-1}[H(z) X(z)]
$$

The z transform of the input is given by

$$
\begin{aligned}
X(z) & =\mathcal{Z}[u(n T) \sin \omega n T]=\frac{z \sin \omega T}{z^{2}-2 z \cos \omega T+1} \\
& =\frac{z \sin \omega T}{\left(z-e^{j \omega T}\right)\left(z-e^{-j \omega T}\right)}
\end{aligned}
$$

and hence

$$
\begin{aligned}
H(z) X(z) z^{n-1} & =\frac{z^{2}-z+1}{\left(z-p_{1}\right)\left(z-p_{2}\right)} \cdot \frac{z \sin \omega T}{\left(z-e^{j \omega T}\right)\left(z-e^{-j \omega T}\right)} \cdot z^{n-1} \\
& =\frac{z^{2}-z+1}{\left(z-p_{1}\right)\left(z-p_{2}\right)} \cdot \frac{\sin \omega T}{\left(z-e^{j \omega T}\right)\left(z-e^{-j \omega T}\right)} \cdot z^{n}
\end{aligned}
$$

Example Cont'd

$$
H(z) X(z) z^{n-1}=\frac{z^{2}-z+1}{\left(z-p_{1}\right)\left(z-p_{2}\right)} \cdot \frac{\sin \omega T}{\left(z-e^{j \omega T}\right)\left(z-e^{-j \omega T}\right)} \cdot z^{n}
$$

Since the system is causal $y(n T)=0$ for $n<0$ and hence the general inversion formula gives

$$
y(n T)=u(n T)\left[R_{1}+R_{2}+R_{3}+R_{4}\right]
$$

where R_{1}, R_{2}, R_{3}, and R_{4} are the residues of $H(z) X(z) z^{n-1}$ at poles $p_{1}, p_{2}, p_{3}=e^{j \omega T}$, and $p_{4}=e^{j \omega T}$, respectively.

The residues can be evaluated as shown in the next three slides.

Example Cont'd

$$
\begin{aligned}
& H(z) X(z) z^{n-1}=\frac{z^{2}-z+1}{\left(z-p_{1}\right)\left(z-p_{2}\right)} \cdot \frac{\sin \omega T}{\left(z-e^{j \omega T}\right)\left(z-e^{-j \omega T}\right)} \cdot z^{n} \\
& R_{1}=\lim _{z=p_{1}}\left[\frac{z^{2}-z+1}{\left(z-p_{2}\right)} \cdot \frac{\sin \omega T}{\left(z-e^{j \omega T}\right)\left(z-e^{-j \omega T}\right)} \cdot z^{n}\right] \\
& =\left[\frac{p_{1}^{2}-p_{1}+1}{\left(p_{1}-p_{2}\right)} \cdot \frac{\sin \omega T}{\left(p_{1}-e^{j \omega T}\right)\left(p_{1}-e^{-j \omega T}\right)} \cdot p_{1}^{n}\right] \\
& =\rho(\omega) e^{j \psi(\omega)}\left(\frac{1}{\sqrt{2}}\right)^{n} e^{j n \pi / 4}=\rho(\omega)\left(\frac{1}{\sqrt{2}}\right)^{n} e^{j[n \pi / 4+\psi(\omega)]} \\
& \quad \rho(\omega)=\left|\frac{p_{1}^{2}-p_{1}+1}{\left(p_{1}-p_{2}\right)} \cdot \frac{\sin \omega T}{\left(p_{1}-e^{j \omega T}\right)\left(p_{1}-e^{-j \omega T}\right)}\right| \\
& \psi(\omega)=\arg \left[\frac{p_{1}^{2}-p_{1}+1}{\left(p_{1}-p_{2}\right)} \cdot \frac{\sin \omega T}{\left(p_{1}-e^{j \omega T}\right)\left(p_{1}-e^{-j \omega T}\right)}\right]
\end{aligned}
$$

where

Example Cont'd

$$
\begin{aligned}
H(z) X(z) z^{n-1} & =\frac{z^{2}-z+1}{\left(z-p_{1}\right)\left(z-p_{2}\right)} \cdot \frac{\sin \omega T}{\left(z-e^{j \omega T}\right)\left(z-e^{-j \omega T}\right)} \cdot z^{n} \\
R_{2} & =R_{1}^{*}=\rho(\omega)\left(\frac{1}{\sqrt{2}}\right)^{n} e^{-j[n \pi / 4+\psi(\omega)]} \\
R_{3} & =\lim _{z=e^{j \omega} T}\left[H(z) X(z) z^{n-1}\right] \\
& =H\left(e^{j \omega T}\right) \cdot \frac{\sin \omega T}{\left(e^{j \omega T}-e^{-j \omega T}\right)} \cdot e^{j n \omega T} \\
& =\frac{1}{2 j} H\left(e^{j \omega T}\right) e^{j n \omega T} \\
R_{4} & =R_{3}^{*}=-\frac{1}{2 j} H\left(e^{-j \omega T}\right) e^{-j n \omega T}
\end{aligned}
$$

Example Cont'd

$$
\begin{aligned}
& R_{1}=\rho(\omega)\left(\frac{1}{\sqrt{2}}\right)^{n} e^{j[n \pi / 4+\psi(\omega)]}, \quad R_{2}=\rho(\omega)\left(\frac{1}{\sqrt{2}}\right)^{n} e^{-j[n \pi / 4+\psi(\omega)]} \\
& R_{3}=\frac{1}{2 j} H\left(e^{j \omega T}\right) e^{j n \omega T}, \quad R_{4}=-\frac{1}{2 j} H\left(e^{-j \omega T}\right) e^{-j n \omega T}
\end{aligned}
$$

If we now let

$$
H\left(e^{j \omega T}\right)=M(\omega) e^{j \theta(\omega)} \text { then } H\left(e^{-j \omega T}\right)=M(\omega) e^{-j \theta(\omega)}
$$

and so

$$
\begin{aligned}
y(n T)= & u(n T)\left[\rho(\omega)\left(\frac{1}{\sqrt{2}}\right)^{n} e^{j[n \pi / 4+\psi(\omega)]}+\rho(\omega)\left(\frac{1}{\sqrt{2}}\right)^{n} e^{-j[n \pi / 4+\psi(\omega)]}\right. \\
& \left.+\frac{1}{2 j} M(\omega) e^{j \theta(\omega)} e^{j n \omega T}-\frac{1}{2 j} M(\omega) e^{-j \theta(\omega)} e^{-j n \omega T}\right]
\end{aligned}
$$

Example Cont'd

$$
\begin{aligned}
y(n T)= & u(n T)\left[\rho(\omega)\left(\frac{1}{\sqrt{2}}\right)^{n} e^{j[n \pi / 4+\psi(\omega)]}+\rho(\omega)\left(\frac{1}{\sqrt{2}}\right)^{n} e^{-j[n \pi / 4+\psi(\omega)]}\right. \\
& \left.+\frac{1}{2 j} M(\omega) e^{j \theta(\omega)} e^{j n \omega T}-\frac{1}{2 j} M(\omega) e^{-j \theta(\omega)} e^{-j n \omega T}\right] \\
= & u(n T)\left\{\rho(\omega)\left(\frac{1}{\sqrt{2}}\right)^{n}\left[e^{j[n \pi / 4+\psi(\omega)]}+e^{-j[n \pi / 4+\psi(\omega)]}\right]\right. \\
& \left.+M(\omega) \frac{1}{2 j}\left[e^{j[n \omega T+\theta(\omega)]}-e^{-j[n \omega T+\theta(\omega)]}\right]\right\} \\
= & u(n T)\left\{\rho(\omega)\left(\frac{1}{\sqrt{2}}\right)^{n-2} \cos \left[\frac{n \pi}{4}+\psi(\omega)\right]\right. \\
& +M(\omega) \sin [n \omega T+\theta(\omega)]\}
\end{aligned}
$$

The cosine term is a transient component that tends to zero as $n \rightarrow \infty$ whereas the sine term represents the steady-state response of the system.

This slide concludes the presentation. Thank you for your attention.

