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Introduction

N Previous presentations dealt largely with the time-domain analysis
of discrete-time systems.

N In this presentation, frequency-domain analysis will be introduced as
an extension of time-domain analysis.

N As will be demonstrated, the response of a discrete-time system to a
sinusoidal excitation consists of two components: a transient
component and a sinusoidal component.

N If the discrete-time system is stable, then the transient component
tends to zero and the sinusoidal component becomes the
steady-state response of the system.

N The amplitude and phase angle of the steady-state sinusoidal
response define the frequency response of the system.
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Steady-State Sinusoidal Response

N Consider a causal recursive system characterized by the
Nth-order transfer function

H(z) =
N(z)

D(z)
=

H0
∏N

i=1(z − zi )∏N
i=1(z − pi )

N The response of such a system to a sinusoidal signal of unit
amplitude and zero phase angle that starts at time 0, i.e.,

x(nT ) = u(nT ) sinωnT

is given by
y(nT ) = Z−1[H(z)X (z)]
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Sinusoidal Response Cont’d

· · ·
x(nT ) = u(nT ) sinωnT

y(nT ) = Z−1[H(z)X (z)]

N From the table of standard z transforms, we have

X (z) = Z[u(nT ) sinωnT ] =
z sinωT

z2 − 2z cosωT + 1

and if we factorize the denominator, we get

X (z) =
z sinωT

(z − e jωT )(z − e−jωT )
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Sinusoidal Response Cont’d

N Using the general inversion formula (see Chap. 4)

y(nT ) =
1

2πj

∮
Γ
H(z)X (z)zn−1 dz

and applying the residue theorem, we have

y(nT ) = u(nT )
N+2∑
i=1

res z=pi [H(z)X (z)zn−1]
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Sinusoidal Response Cont’d

N If we consider a transfer function with simple poles (for the
sake of simplicity), we have

H(z) =
N(z)

D(z)
=

H0
∏N

i=1(z − zi )∏N
i=1(z − pi )

and since

X (z) =
z sinωT

(z − e jωT )(z − e−jωT )

the sinusoidal response is given by

y(nT ) = u(nT )
N+2∑
i=1

res z=pi [H(z)X (z)zn−1]
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Sinusoidal Response Cont’d

· · ·
y(nT ) = u(nT )

N+2∑
i=1

res z=pi [H(z)X (z)zn−1]

or

y(nT ) = u(nT )
{ N∑

i=1

X (pi )p
n−1
i res z=piH(z)

+
1

2j
[H(e jωT )e jωnT − H(e−jωT )e−jωnT ]

}
where the first two terms are the residues of H(z)X (z)zn−1 at the
poles of X (z) and the terms under the sum are its residues at the
poles of H(z).
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Sinusoidal Response Cont’d

N The sinusoidal response of a system can thus be expressed as
a sum of two components, i.e.,

y(nT ) = yTR(nT ) + ỹ(nT )

where

yTR(nT ) =
N∑
i=1

X (pi )p
n−1
i res z=piH(z) (A)

ỹ(nT ) =
1

2j
[H(e jωT )e jωnT − H(e−jωT )e−jωnT ] (B)
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Sinusoidal Response Cont’d

N If we express pole pi in the exponential form pi = rie
jψi , then

pn−1
i = rn−1

i e j(n−1)ψi

N If the system is stable, then ri < 1 for i = 1, 2, . . . , N and
hence

lim
n→∞

pn−1
i = lim

n→∞
[rn−1
i e j(n−1)ψi ]→ 0
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Sinusoidal Response Cont’d

· · ·
yTR(nT ) =

N∑
i=1

X (pi )p
n−1
i res z=piH(z) (A)

lim
n→∞

pn−1
i = lim

n→∞
[rn−1
i e j(n−1)ψi ]→ 0

N Consequently, Eq. (A) gives

lim
n→∞

yTR(nT ) = lim
n→∞

N∑
i=1

X (pi )p
n−1
i res z=piH(z)→ 0

i.e., yTR(nT ) is a transient component which tends to zero as
n→∞ if the system is stable.
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Sinusoidal Response Cont’d

N Hence the steady-state response of the system can be
obtained as

ỹ(nT ) = lim
n→∞

y(nT ) =
1

2j
[H(e jωT )e jωnT − H(e−jωT )e−jωnT ]

N If we now let H(e jωT ) = M(ω)e jθ(ω) where

M(ω) = |H(e jωT )| and θ(ω) = argH(e jωT )

straightforward manipulation (see textbook) will show that
M(ω) is an even function and θ(ω) is an odd function of ω,
i.e.,

M(−ω) = M(ω) and θ(−ω) = −θ(ω)
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Sinusoidal Response Cont’d

· · ·
ỹ(nT ) = lim

n→∞
y(nT ) =

1

2j
[H(e jωT )e jωnT − H(e−jωT )e−jωnT ]

where M(ω) = |H(e jωT )|, θ(ω) = argH(e jωT )

and M(−ω) = M(ω), θ(−ω) = −θ(ω)

N Therefore, the steady-state sinusoidal response can be expressed as

ỹ(nT ) =
1

2j

[
M(ω)e jθ(ω)e jωnT −M(ω)e−jθ(ω)e−jωnT

]
= M(ω)

1

2j

[
e j[ωnT+θ(ω)] − e−j[ωnT+θ(ω)]

]
= M(ω) sin[ωnT + θ(ω)]

i.e., ỹ(nT ) is a sinusoidal component with amplitude M(ω) and
phase angle θ(ω).
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Sinusoidal Response Cont’d

N Summarizing, the steady-state response of an N-order
discrete-time system to a sinusoidal signal with unit amplitude
and zero phase angle is another sinusoidal signal of the form

lim
nT→∞

y(nT ) = ỹ(nT ) = M(ω) sin[ωnT + θ(ω)]

which has an amplitude and phase angle

M(ω) = |H(e jωT )| and θ(ω) = argH(e jωT )

respectively.

N In effect, a discrete-time system will multiply the amplitude of
a sinusoidal input by M(ω) and increase its phase angle by
θ(ω).

Frame # 13 Slide # 20 A. Antoniou Digital Filters – Sec. 5.5.1-5.5.3



Sinusoidal Response Cont’d

N Summarizing, the steady-state response of an N-order
discrete-time system to a sinusoidal signal with unit amplitude
and zero phase angle is another sinusoidal signal of the form

lim
nT→∞
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Sinusoidal Response Cont’d

1

1.0

nT

nT

M(ω)

 −1.0

x(nT )

y(nT )

θ(ω)
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Sinusoidal Response Cont’d

· · ·
M(ω) = |H(e jωT )| and θ(ω) = argH(e jωT )

N M(ω) is said to be the gain of the system at frequency ω.

In digital filters, M(ω) can vary over many orders of
magnitude and is often expressed in decibels (dB) as
20 logM(ω).

N θ(ω) is said to be the phase shift of the system at frequency
ω.

It is measured in degrees or radians.

N As a function of ω, M(ω) is said to be the amplitude response.

N As a function of ω, θ(ω) is said to be the phase response.
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Sinusoidal Response Cont’d

N The function
H(e jωT ) = M(ω)e jθ(ω)

which includes the amplitude response M(ω) and phase
response θ(ω) as components is said to be the frequency
response of the system.
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Physical Interpretation

N The frequency spectrum of a signal x(nT ) whose z transform is
X (z) is given by X (e jωT ) (see Chap. 4).

N As was stated in the previous slide, H(e jωT ) is the frequency
response of the system.

N Since H(z) is the z transform of the impulse response, h(nT ), it
follows that H(e jωT ) is also the frequency spectrum of the impulse
response.

N Since

Y (z) = H(z)X (z) or Y (e jωT ) = H(e jωT )X (e jωT )

we conclude that the spectrum of the output signal is equal to the
frequency response (or the spectrum of the impulse response) of the
system times the spectrum of the input signal.
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Evaluation of Frequency Response

N The previous slides have shown that the frequency response of
a discrete-time system can be obtained by letting z = e jωT in
the discrete-time transfer function H(z).

N This amounts to evaluating the transfer function on the unit
circle |z | = 1 of the z plane.

N If we let z = e jωT in the transfer function

H(z) =
H0
∏N

i=1(z − zi )
mi∏N

i=1(z − pi )ni

we obtain

H(e jωT ) = M(ω)e jθ(ω) =
H0
∏N

i=1(e jωT − zi )
mi∏N

i=1(e jωT − pi )ni

Frame # 18 Slide # 32 A. Antoniou Digital Filters – Sec. 5.5.1-5.5.3



Evaluation of Frequency Response

N The previous slides have shown that the frequency response of
a discrete-time system can be obtained by letting z = e jωT in
the discrete-time transfer function H(z).

N This amounts to evaluating the transfer function on the unit
circle |z | = 1 of the z plane.

N If we let z = e jωT in the transfer function

H(z) =
H0
∏N

i=1(z − zi )
mi∏N

i=1(z − pi )ni

we obtain

H(e jωT ) = M(ω)e jθ(ω) =
H0
∏N

i=1(e jωT − zi )
mi∏N

i=1(e jωT − pi )ni

Frame # 18 Slide # 33 A. Antoniou Digital Filters – Sec. 5.5.1-5.5.3



Evaluation of Frequency Response

N The previous slides have shown that the frequency response of
a discrete-time system can be obtained by letting z = e jωT in
the discrete-time transfer function H(z).

N This amounts to evaluating the transfer function on the unit
circle |z | = 1 of the z plane.

N If we let z = e jωT in the transfer function

H(z) =
H0
∏N

i=1(z − zi )
mi∏N

i=1(z − pi )ni

we obtain

H(e jωT ) = M(ω)e jθ(ω) =
H0
∏N

i=1(e jωT − zi )
mi∏N

i=1(e jωT − pi )ni

Frame # 18 Slide # 34 A. Antoniou Digital Filters – Sec. 5.5.1-5.5.3



Evaluation of Frequency Response Cont’d

· · ·
H(e jωT ) = M(ω)e jθ(ω) =

H0
∏N

i=1(e jωT − zi )
mi∏N

i=1(e jωT − pi )ni

N By letting e jωT − zi = Mzi e
jψzi and e jωT − pi = Mpi e

jψpi

we get M(ω) =
|H0|

∏N
i=1 M

mi
zi∏N

i=1 M
ni
pi

(B)

θ(ω) = argH0 +
N∑
i=1

miψzi −
N∑
i=1

niψpi (C)

where argH0 = π if H0 is negative and is zero otherwise.
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Graphical Procedure

The gain and phase shift of a discrete-time system at a specified
frequency ω can be determined graphically through the following
procedure:

1. Mark the zeros and poles of the system in the z plane.

2. Draw the unit circle.

3. Draw the complex number e jωT .

4. Draw mi complex numbers from each mi th-order zero of H(z)
to meet complex number e jωT on the unit circle.

5. Draw ni complex numbers from each ni th-order pole to meet
complex number e jωT on the unit circle.
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Graphical Procedure Cont’d

6. Calculate the gain M(ω) using Eq. (C), i.e.,

M(ω) =
|H0|

∏N
i=1 M

mi
zi∏N

i=1 M
ni
pi

(B)

7. Calculate phase shift θ(ω) using Eq. (D), i.e.,

θ(ω) = argH0 +
N∑
i=1

miψzi −
N∑
i=1

niψpi (C)

N The amplitude and phase responses of a system can be
determined by repeating the above procedure for frequencies
ω = ω1, ω2, . . . in the range 0 to π/T .
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determined by repeating the above procedure for frequencies
ω = ω1, ω2, . . . in the range 0 to π/T .
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Graphical Procedure Cont’d

N Frequency response of second-order system:
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Graphical Procedure Cont’d

N Point A corresponds to zero frequency.
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Graphical Procedure Cont’d

N One complete revolution from point A in the counterclockwise sense
back to point A corresponds to ∆ω = ωs = 2π/T .
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Graphical Procedure Cont’d

· · ·
N One complete revolution from point A in the counterclockwise

sense back to point A corresponds to ∆ω = ωs = 2π/T .

N Since T is the period between samples, ωs is called the
sampling frequency in rad/s.
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Graphical Procedure Cont’d

· · ·
N One complete revolution from point A in the counterclockwise
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N Since T is the period between samples, ωs is called the
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Graphical Procedure Cont’d

N Point C corresponds to frequency π/T = 1
2ωs which is

commonly referred to as the Nyquist frequency .
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Periodicity of Frequency Response

N If e jωT is rotated k complete revolutions, the values of M(ω) and
θ(ω) will obviously remain unchanged and so

H(e j(ω+kωs )T ) = H(e jωT )
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Periodicity of Frequency Response Cont’d

· · ·
H(e j(ω+kωs)T ) = H(e jωT )

N We conclude that the frequency response of a discrete-time
system is periodic with period ωs .
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Periodicity of Frequency Response Cont’d

N The periodicity of the frequency response can be visualized by
considering the z plane as a Riemann surface of the form illustrated
below. (See Appendix for details.)
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Periodicity of Frequency Response Cont’d

N The periodicity of the frequency response can be viewed from a
different perspective by examining the discrete-time sinusoidal signal

x(nT ) = sin[(ω + kωs)nT ]

N Using simple trigonometry, we can show that

x(nT ) = sinωnT cos kωsnT + cosωnT sin kωsnT

= sinωnT cos

(
k · 2π

T
· nT

)
+ cosωnT sin

(
k · 2π

T
· nT

)
= sinωnT cos 2knπ + cosωnT sin 2knπ

= sinωnT

that is

x(nT ) = sin(ωnT + kωsnT ) = sin(ωnT )
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Periodicity of Frequency Response Cont’d

· · ·
x(nT ) = sin(ωnT + kωsnT ) = sin(ωnT )

N In effect, sin(ωk + ωs)nT and sinωnT are numerically
identical for any k , and if the two signals are applied at the
input of a discrete-time system, they will produce the same
response.
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This slide concludes the presentation.

Thank you for your attention.
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