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Introduction

t In Sec. 5.5, it is shown that the steady-state response of a stable
Nth-order discrete-time system to a sinusoidal signal

x(nT ) = u(nT ) sinωnT

is another sinusoidal signal of the form

lim
nT→∞

y(nT ) = ỹ(nT ) = M(ω) sin[ωnT + θ(ω)]

t The quantities

M(ω) = |H(e jωT )| and θ(ω) = argH(e jωT )

define the amplitude response and phase response, respectively, and

H(z)
∣∣
z=e jωT = H(e jωT ) = M(ω)e jθ(ω)

defines the frequency response.
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Introduction Cont’d

t It was also shown that the frequency response of a
discrete-time system is periodic with period ωs .

t Thus the frequency response is completely specified if it is
known over the frequency range −ωs/2 < ω ≤ ωs/2.

This frequency range is known as the baseband.t It can be easily shown that the amplitude response is an even
function and the phase response is an odd function of ω, i.e.,

M(−ω) = M(ω) and θ(−ω) = −θ(ω)

t Therefore, the frequency response is completely specified if it
is known over the positive half of the baseband, i.e.,
0 ≤ ω ≤ ωs/2.
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Introduction Cont’d

t In Chap. 1, a number of different types of filters have been
identified on the basis of which frequencies are passed or
rejected, e.g., lowpass or highpass filters.

t In the analog world, a lowpass filter will pass low frequencies
in the range 0 ≤ ω < ωc and reject high frequencies in the
range ωc < ω <∞ where ωc is called the cutoff frequency.t On the other hand, an analog highpass filter will pass high
frequencies in the range ωc ≤ ω <∞ and reject low
frequencies in the range 0 < ω ≤ ωc .
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Introduction Cont’d

t In the digital world, the filter is classified on the basis of its
amplitude response with respect to the positive half of the
baseband.

t Thus a digital lowpass filter will pass low frequencies in the
range 0 ≤ ω < ωc and reject high frequencies in the range
ωc < ω < ωs/2 where ωc is the cutoff frequency, as in the
case of analog filters.t A digital highpass filter will pass high frequencies in the range
ωc ≤ ω < ωs/2 and reject low frequencies in the range
0 < ω ≤ ωc .
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Introduction Cont’d

t A digital bandpass filter will pass midband frequencies in the
range ωc1 ≤ ω < ωc2 and reject low frequencies in the range
0 < ω ≤ ωc1 and high frequencies in the range
ωc2 ≤ ω < ωs/2 where ωc1 and ωc2 are said to be the lower
and upper cutoff frequencies, respectively.

t On the other hand, a digital bandstop filter will reject
midband frequencies in the range ωc1 ≤ ω < ωc2 and pass low
frequencies in the range 0 < ω ≤ ωc1 and high frequencies in
the range ωc2 ≤ ω < ωs/2.t In other words, the upper edge of the baseband in digital
systems is analogous to infinite frequency in analog systems.
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Introduction Cont’d

t An arbitrary transfer function H(z) can be expressed in terms of its
magnitude and angle as

H(z) = |H(z)|e j argH(z)

t If z is a complex variable of the form z = Re z + j Im z , then

|H(z)| = |Re H(z) + j Im H(z)|

and

argH(z) = tan−1
Im H(z)

Re H(z)t These quantities represent surfaces over the z plane, which can be
represented by 3-dimensional plots.

Note: The magnitude function |H(z)| is, of course, a nonnegative
quantity but argH(z) can be positive or negative.
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Introduction Cont’d

t If we let z = e jωT , i.e., if z assumes values on the unit circle
|z | = 1, then 3-D plots of the form

– |H(e jωT )| versus e jωT and argH(e jωT ) versus e jωT

can be constructed which represent the amplitude and phase
responses.

t These 3-D plots are, of course, subsets of the plots

– |H(z)| versus z and arg(z) versus z .t From these 3-D plots, 2-D plots of the form

– M(ω) versus ω and θ(ω) versus ω

can be constructed, which represent the amplitude and phase
responses.
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Introduction Cont’d

t In this presentation, we explore the various types of
geometrical representations that are associated with

– the transfer function,
– the amplitude response, and
– the phase response.

t The various representations are illustrated in terms of specific
transfer functions for

– a lowpass recursive filter,
– a lowpass nonrecursive filter, and
– a bandpass recursive filter.
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Geometrical Representations

t If

H(z) =
N(z)

D(z)
=

H0
∏N

i=1(z − zi )∏N
i=1(z − pi )

then the zeros z1, z2, . . . of H(z) will show up as dimples in
the surface |H(z)| whereas the poles p1, p2, . . . will show up
as spikes.

t The slides that follow will illustrate the various geometrical
representations that are associated with the transfer function,
amplitude response and phase response, e.g.,

– zero-pole plot
– 3-D plots of |H(z)| and argH(z) versus z = Re z + j Im z
– 3-D plots of |H(e jωT )| and argH(e jωT ) versus z = e jωT

– 2-D plots of M(ω) = |H(e jωT )| and θ(ω) = argH(e jωT )
versus ω
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Lowpass Filter

t Consider a fourth-order lowpass digital filter that has the
following transfer function

H(z) = H0

2∏
i=1

Hi (z) where Hi (z) =
a0i + a1iz + z2

b0i + b1iz + z2

with

H0 = 6.351486E − 02

a01 = 1.0, a11 = 1.494070

b01 = 5.115041E − 01, b11 = −1.015631

a02 = 1.0, a12 = 4.188149E − 01

b02 = 8.839638E − 01 b12 = −3.548538E − 01
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Lowpass Filter Cont’d

t The transfer function can be expressed in terms of its zeros
and poles as

H(z) = H0

2∏
i=1

Hi (z) where Hi (z) =
(z − zi )(z − z∗i )

(z − pi )(z − p∗i )

with

z1, z
∗
1 = −0.7470± j0.6648

z2, z
∗
2 = −0.2094± j0.9778

p1, p
∗
1 = 0.5078± j0.5036

p2, p
∗
2 = 0.1774± j0.9233

and
H0 = 6.351486E − 02
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Lowpass Filter Cont’d

t Zero-pole plot:
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Lowpass Filter Cont’d

t Plot of |H(z)| (in dB) versus z = Re z + j Im z :
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The dimples and spikes are the zeros and poles, respectively.
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Lowpass Filter Cont’d

t The amplitude response can be obtained as

M(ω) = |H0|
2∏

i=1

∣∣Hi (e
jωT )

∣∣ = |H0|
2∏

i=1

Mi (ω) where

Mi (ω) =
∣∣Hi (e

jωT )
∣∣ =

∣∣∣∣ a0i + a1ie
jωT + e j2ωT

b0i + b1ie jωT + e j2ωT

∣∣∣∣
=

∣∣∣∣ (a0i + a1i cosωT + cos 2ωT ) + j(a1i sinωT + sin 2ωT )

(b0i + b1i cosωT + cos 2ωT ) + j(b1i sinωT + sin 2ωT )

∣∣∣∣
=

[
(a0i + a1i cosωT + cos 2ωT )2 + (a1i sinωT + sin 2ωT )2

(b0i + b1i cosωT + cos 2ωT )2 + (b1i sinωT + sin 2ωT )2

] 1
2

=

[
1 + a20i + a21i + 2(1 + a0i )a1i cosωT + 2a0i cos 2ωT

1 + b20i + b21i + 2(1 + b0i )b1i cosωT + 2b0i cos 2ωT

] 1
2
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Lowpass Filter Cont’d

t Since z = e jωnT represents a circle of unit radius in the z
plane, the amplitude response

M(ω) = |H(e jωnT )|

can be represented geometrically by the intersection between
the surface |H(z)| and a cylinder of unit radius perpendicular
to the z plane.
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Lowpass Filter Cont’d

t Plot of |H(z)| (in dB) versus z = Re z + j Im z :
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The intersection between the surface |H(z)| and the cylinder is the
amplitude response.
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Lowpass Filter Cont’d

t Plot of |H(z)| (in dB) versus z = e jωT :
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The intersection between surface |H(z)| and the cylinder, i.e., the
solid curve, is the amplitude response.
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Lowpass Filter Cont’d

t Slicing the cylinder along the vertical line z = −1 and
flattening it out will reveal the amplitude response, i.e., M(ω)
versus ω, as a two-dimensional plot:
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Lowpass Filter Cont’d

t Plot of argH(z) (in rad) versus z = Re z + j Im z :
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Lowpass Filter Cont’d

t The phase response can be obtained as

θ(ω) = argH0 +
2∑

i=1

argHi (e
jωT ) =

2∑
i=1

θi (ω) where

θi (ω) = argHi (e
jωT )

= arg
a0i + a1ie

jωT + e j2ωT

b0i + b1ie jωT + e j2ωT

= arg
(a0i + a1i cosωT + cos 2ωT ) + j(a1i sinωT + sin 2ωT )

(b0i + b1i cosωT + cos 2ωT ) + j(b1i sinωT + sin 2ωT )

= tan−1
a1i sinωT + sin 2ωT

a0i + a1i cosωT + cos 2ωT

− tan−1
b1i sinωT + sin 2ωT

b0i + b1i cosωT + cos 2ωT

(See textbook for details.)
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Lowpass Filter Cont’d

t Since z = e jωT represents a circle of unit radius in the z
plane, the phase response

θ(ω) = argH(e jωT ) = tan−1 Im H(e jωT )

Re H(e jωT )

can be represented geometrically by the intersection between
the surface argH(z) and a cylinder of unit radius
perpendicular to the z plane.
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Lowpass Filter Cont’d

t Plot of argH(z) (in rad) versus z = Re z + j Im z :
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The intersection between surface argH(z) and the cylinder is the
phase response.
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Lowpass Filter Cont’d

t Plot of argH(z) (in rad) versus z = e jωT :
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The intersection between surface argH(z) and the cylinder, i.e.,
the solid curve, is the phase response.

Frame # 24 Slide # 41 A. Antoniou Digital Filters – Sec. 5.5.5



Lowpass Filter Cont’d

t Slicing the cylinder along the vertical line z = −1 and
flattening it out will reveal the phase response, i.e., θ(ω)
versus ω, as a two-dimensional plot:
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Pitfall

t The phase response shown in the previous slide is actually the phase
response that would be computed by using MATLAB’s function
atan2(y,x) but it is not correct!

The abrupt jumps of 2π should not be present.

t This problem has to do with the fact that

θ = tan−1
x

y

is a multivalued function, and MATLAB’s function atan2(y,x) would
give a value for θ in the range −2π ≤ θ ≤ 2π.

Computers in general would give a value in the range −π ≤ θ ≤ π.t The problem can be corrected by noting that the phase response is
a continuous function of ω.
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The abrupt jumps of 2π should not be present.t This problem has to do with the fact that

θ = tan−1
x

y

is a multivalued function, and MATLAB’s function atan2(y,x) would
give a value for θ in the range −2π ≤ θ ≤ 2π.

Computers in general would give a value in the range −π ≤ θ ≤ π.

t The problem can be corrected by noting that the phase response is
a continuous function of ω.
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Pitfall

t The phase response shown in the previous slide is actually the phase
response that would be computed by using MATLAB’s function
atan2(y,x) but it is not correct!

The abrupt jumps of 2π should not be present.t This problem has to do with the fact that

θ = tan−1
x

y

is a multivalued function, and MATLAB’s function atan2(y,x) would
give a value for θ in the range −2π ≤ θ ≤ 2π.

Computers in general would give a value in the range −π ≤ θ ≤ π.t The problem can be corrected by noting that the phase response is
a continuous function of ω.
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Pitfall Cont’d

t For example, if function atan2(y,x) gives a value of −179
followed by a value of +179◦ then, assuming a continuous
phase response, an error of +360◦ has been committed and
360◦ should be subtracted from +179◦ to give the correct
value of −181◦.

t Similarly, if function atan2(y,x) gives a value of +179 followed
by a value of −179◦, then an error of −360◦ has been
committed and 360◦ should be added to −179◦ to give the
correct value +181◦.t Alternatively, the correct value of the phase response can be
obtained by using function unwrap(p) of MATLAB, which will
perform the necessary corrections.
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Pitfall Cont’d

t For example, if function atan2(y,x) gives a value of −179
followed by a value of +179◦ then, assuming a continuous
phase response, an error of +360◦ has been committed and
360◦ should be subtracted from +179◦ to give the correct
value of −181◦.t Similarly, if function atan2(y,x) gives a value of +179 followed
by a value of −179◦, then an error of −360◦ has been
committed and 360◦ should be added to −179◦ to give the
correct value +181◦.

t Alternatively, the correct value of the phase response can be
obtained by using function unwrap(p) of MATLAB, which will
perform the necessary corrections.
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Pitfall Cont’d

t For example, if function atan2(y,x) gives a value of −179
followed by a value of +179◦ then, assuming a continuous
phase response, an error of +360◦ has been committed and
360◦ should be subtracted from +179◦ to give the correct
value of −181◦.t Similarly, if function atan2(y,x) gives a value of +179 followed
by a value of −179◦, then an error of −360◦ has been
committed and 360◦ should be added to −179◦ to give the
correct value +181◦.t Alternatively, the correct value of the phase response can be
obtained by using function unwrap(p) of MATLAB, which will
perform the necessary corrections.
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Lowpass Filter Cont’d

t Unwrapped phase response:

−10 −5 0

(i)

5 10
−30

−25

−20

−15

−10

−5

0

5

Frequency, rad/s

P
h
as

e 
sh

if
t,

 r
ad

Frame # 28 Slide # 49 A. Antoniou Digital Filters – Sec. 5.5.5



Example – Nonrecursive Lowpass Filter

The figure shows a nonrecursive filter:

A2

A2

A0

A1

A1

Y(z)X(z)

A0 = 0.3352, A1 = 0.2540, A2 = 0.0784
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Example Cont’d

(a) Construct the zero-pole plot.

(b) Plot the surface |H(z)| as a function of z = Re z + j Im z .

(c) Obtain expressions for the amplitude and phase responses.

(d1) Plot the amplitude and phase responses in terms of 3-D plots.

(d2) Plot the amplitude and phase responses in terms of 2-D plots.
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Example Cont’d

Solution

A2

A2

A0

A1

A1

Y(z)X(z)

Transfer function:

H(z) = A2 + A1z
−1 + A0z

−2 + A1z
−3 + A2z

−4

=
A2z

2 + A1z + A0 + A1z
−1 + A2z

−2

z2

=
A2z

4 + A1z
3 + A0z

2 + A1z + A2

z4
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Example Cont’d

· · ·
H(z) = A2 + A1z

−1 + A0z
−2 + A1z

−3 + A2z
−4

=
A2z

2 + A1z + A0 + A1z
−1 + A2z

−2

z2

=
A2z

4 + A1z
3 + A0z

2 + A1z + A2

z4

The zeros can be readily found by using D-Filter or MATLAB as

z1 = −1.5756 z2 = −0.6347 z3, z4 = −0.5148± j0.8573

There is a 4th-order pole at the origin.
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Example Cont’d

Zero-pole plot:

−2 −1 0

(a)

1 2
−2

−1

0

1

2

Re z

 j
I
m

 z

z1 = −1.5756 z2 = −0.6347 z3, z4 = −0.5148± j0.8573

p1 = p2 = p3 = p4 = 0
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Example Cont’d

|H(z)| versus z = Re z + j Im z :
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|
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Re z 
 jIm z 
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(b) 

−1 

0 
1 

2 

Dimples represent zeros, the huge spike represents the 4th-order pole at
the origin.
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Example Cont’d

Since

H(z) = A2 + A1z
−1 + A0z

−2 + A1z
−3 + A2z

−4

=
A2z

2 + A1z + A0 + A1z
−1 + A2z

−2

z2
(A)

=
A2z

4 + A1z
3 + A0z

2 + A1z + A2

z4

Eq. (A) gives the frequency response as

H(e jωT ) =
A2(e j2ωT + e−j2ωT ) + A1(e jωT + e−jωT ) + A0

e j2ωT

=
2A2 cos 2ωT + 2A1 cosωT + A0

e j2ωT
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Example Cont’d

· · ·
H(e jωT ) =

2A2 cos 2ωT + 2A1 cosωT + A0

e j2ωT

Therefore, the amplitude and phase responses are given by

M(ω) = |2A2 cos 2ωT + 2A1 cosωT + A0|

and
θ(ω) = θN − 2ωT

respectively, where

θN =

{
0 if 2A2 cos 2ωT + 2A1 cosωT + A0 ≥ 0

π otherwise

Note: The phase response is usually a linear function of ω in
nonrecursive filters (see Chap. 10).
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Example Cont’d

· · ·
H(e jωT ) =

2A2 cos 2ωT + 2A1 cosωT + A0

e j2ωT

Therefore, the amplitude and phase responses are given by

M(ω) = |2A2 cos 2ωT + 2A1 cosωT + A0|

and
θ(ω) = θN − 2ωT

respectively, where

θN =

{
0 if 2A2 cos 2ωT + 2A1 cosωT + A0 ≥ 0

π otherwise

Note: The phase response is usually a linear function of ω in
nonrecursive filters (see Chap. 10).
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Example Cont’d

3-D plot of amplitude response, i.e., argH(e jωT ) versus z = e jωT :
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Example Cont’d

3-D plot of phase response, i.e., argH(e jωT ) versus z = e jωT :
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Note: The phase angle has been unwrapped.
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Example Cont’d

2-D plot of amplitude response, i.e., M(ω) = |H(e jωT )| versus ω:
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Example Cont’d

2-D plot of phase response, i.e., argH(e jωT ) versus ω:
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Note: The discontinuities are genuine: they are caused by zeros on the
unit circle.
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Example – Recursive Bandpass Filter

A recursive digital filter is characterized by the transfer function

H(z) = H0

3∏
i=1

Hi (z)

where

Hi (z) =
a0i + a1iz + z2

b0i + b1iz + z2

The sampling frequency is 20 rad/s.

Transfer-Function Coefficients

i a0i a1i b0i b1i

1 −1.0 0.0 8.131800E−1 7.870090E−8
2 1.0 −1.275258 9.211099E−1 5.484026E−1
3 1.0 1.275258 9.211097E−1 −5.484024E−1

H0 = 1.763161E − 2

Frame # 41 Slide # 63 A. Antoniou Digital Filters – Sec. 5.5.5



Example Cont’d

(a) Construct the zero-pole plot of the filter.

(b) Plot the surface |H(z)| as a function of z = Re z + j Im z .

(c) Obtain expressions for the amplitude and phase responses.

(d) Plot the amplitude and phase responses first in terms of 3-D
plots and then in terms of 2-D plots.
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Example Cont’d

Solution

−2 −1 0
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z1, z2 = ±1 z3, z4 = 0.638± j0.770 z5, z6 = −0.638± j0.770

p1, p2 = ±j0.902 p3, p4 = 0.274± j0.770 p5, p6 = −0.274± j0.770
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Example Cont’d

|H(z)| versus z = Re z + j Im z :
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Dimples represent zeros, the huge spike represents the 4th-order pole at
the origin.
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Example Cont’d

Plot of |H(z)| (in dB) versus z = e jωT :
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The intersection between surface |H(z)| and the cylinder, i.e., the
solid curve, is the amplitude response.
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Example Cont’d

Plot of argH(z) (in rad) versus z = e jωT with the phase angle
unwrapped:
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Example Cont’d

Slicing the cylinder along the vertical line z = −1 and flattening it
out will reveal the amplitude response, i.e., M(ω) versus ω, as a
two-dimensional plot:
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Example Cont’d

Unwrapped phase response:
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Note: The discontinuities shown are genuine. They are caused by the
zeros on the unit circle.
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This slide concludes the presentation.

Thank you for your attention.
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