Chapter 5 APPLICATION OF TRANSFORM THEORY TO SYSTEMS 5.6 Transfer Functions for Digital Filters 5.7 Amplitude and Delay Distortion

Copyright © 2018 Andreas Antoniou Victoria, BC, Canada Email: aantoniou@ieee.org

July 10, 2018

Frame # 1 Slide # 1

A. Antoniou

イロン 不同 とくほど 不同 とう

Introduction

⇒ Previous presentations dealt with the frequency response of discrete-time systems, which is obtained by using the transfer function.

Introduction

- ⇒ Previous presentations dealt with the frequency response of discrete-time systems, which is obtained by using the transfer function.
- ⇒ In this presentation, we examine some of the basic types of transfer functions that characterize some typical first- and second-order filter types known as *biquads*.

Introduction

- ⇒ Previous presentations dealt with the frequency response of discrete-time systems, which is obtained by using the transfer function.
- ⇒ In this presentation, we examine some of the basic types of transfer functions that characterize some typical first- and second-order filter types known as *biquads*.
- ⇒ Biquads are often used as basic digital-filter blocks to construct high-order filters.

First-Order Transfer Functions

 \Rightarrow A first-order transfer function can have only a real zero and a real pole, i.e.,

$$H(z) = \frac{z - z_0}{z - p_0}$$

First-Order Transfer Functions

⇒ A first-order transfer function can have only a real zero and a real pole, i.e.,

I

$$H(z) = \frac{z - z_0}{z - p_0}$$

⇒ To ensure that the system is stable, the pole must satisfy the condition $-1 < p_0 < 1$.

First-Order Transfer Functions

 \Rightarrow A first-order transfer function can have only a real zero and a real pole, i.e.,

$$H(z)=\frac{z-z_0}{z-p_0}$$

- ⇒ To ensure that the system is stable, the pole must satisfy the condition $-1 < p_0 < 1$.
- \Rightarrow The zero can be anywhere on the real axis of the z plane.

I

⇒ If the pole is close to point (1, 0) and the zero is close to or at point (-1, 0), then we have a *lowpass* filter.

- ⇒ If the pole is close to point (1, 0) and the zero is close to or at point (-1, 0), then we have a *lowpass* filter.
- ⇒ If the zero and pole positions are interchanged, then we get a highpass filter.

⇒ Certain applications require discrete-time systems that have a constant amplitude response and a varying phase response.

Such systems can be constructed by using *allpass* transfer functions.

⇒ Certain applications require discrete-time systems that have a constant amplitude response and a varying phase response.

Such systems can be constructed by using *allpass* transfer functions.

 \Rightarrow A first-order allpass transfer function is of the form

$$H(z) = \frac{p_0 z - 1}{z - p_0} = p_0 \frac{z - 1/p_0}{z - p_0}$$

where the zero is the reciprocal of the pole.

Frame # 5 Slide # 11

⇒ Certain applications require discrete-time systems that have a constant amplitude response and a varying phase response.

Such systems can be constructed by using *allpass* transfer functions.

 \Rightarrow A first-order allpass transfer function is of the form

$$H(z) = \frac{p_0 z - 1}{z - p_0} = p_0 \frac{z - 1/p_0}{z - p_0}$$

where the zero is the reciprocal of the pole.

 \Rightarrow The frequency response of a system characterized by H(z) is given by

$$H(e^{j\omega T}) = \frac{p_0 e^{j\omega T} - 1}{e^{j\omega T} - p_0} = \frac{p_0 \cos \omega T + jp_0 \sin \omega T - 1}{\cos \omega T + j \sin \omega T - p_0}$$

Frame # 5 Slide # 12

 $H(e^{j\omega T}) = \frac{p_0 e^{j\omega T} - 1}{e^{j\omega T} - p_0} = \frac{p_0 \cos \omega T + jp_0 \sin \omega T - 1}{\cos \omega T + j \sin \omega T - p_0}$

 \Rightarrow The amplitude and phase responses are given by

$$M(\omega) = \left| \frac{p_0 \cos \omega T - 1 + jp_0 \sin \omega T}{\cos \omega T - p_0 + j \sin \omega T} \right|$$
$$= \left[\frac{(p_0 \cos \omega T - 1)^2 + (p_0 \sin \omega T)^2}{(\cos \omega T - p_0)^2 + (\sin \omega T)^2} \right]^{\frac{1}{2}} = 1$$

and

$$\theta(\omega) = \tan^{-1} \frac{p_0 \sin \omega T}{p_0 \cos \omega T - 1} - \tan^{-1} \frac{\sin \omega T}{\cos \omega T - p_0}$$

respectively.

Frame # 6 Slide # 13

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへの

Second-Order Lowpass Biquad

⇒ A *lowpass* second-order transfer function can be constructed by placing a complex-conjugate pair of poles anywhere inside the unit circle and a pair of zeros at the Nyquist point:

Frame # 7 Slide # 14

回とくほとくほど

 \Rightarrow The transfer function of the lowpass biquad assumes the form:

$$H_{LP}(z) = \frac{(z+1)^2}{(z-re^{j\phi})(z-re^{-j\phi})} = \frac{z^2+2z+1}{z^2-2r(\cos\phi)z+r^2}$$

where 0 < r < 1.

⇒ As the poles move closer to the unit circle, the amplitude response develops a peak at frequency $\omega = \phi/T$ while the slope of the phase response tends to become steeper and steeper at that frequency.

Frame # 9 Slide # 16

Second-Order Highpass Biquad

 \Rightarrow A highpass second-order transfer function can be constructed by placing a complex-conjugate pair of poles anywhere inside the unit circle and a pair of zeros at point (1,0):

Frame # 10 Slide # 17

・日・・ モ・・ モ・

Second-Order Highpass Biquad Cont'd

 $\Rightarrow\,$ The transfer function of the highpass biquad assumes the form:

$$H_{HP}(z) = \frac{(z-1)^2}{z^2 - 2r(\cos\phi)z + r^2} = \frac{(z^2 - 2z + 1)}{z^2 - 2r(\cos\phi)z + r^2}$$

where 0 < r < 1.

イロト イロト イヨト イヨト ヨー わへの

Second-Order Highpass Biquad Cont'd

⇒ As the poles move closer to the unit circle, the amplitude response develops a peak at frequency $\omega = \phi/T$ while the slope of the phase response tends to become steeper and steeper at that frequency.

Frame # 12 Slide # 19

A. Antoniou

Digital Filters – Secs. 5.6, 5.7

Second-Order Bandpass Biquad

 \Rightarrow A *bandpass* second-order transfer function can be constructed by placing a complex-conjugate pair of poles anywhere inside the unit circle, zeros at points (-1, 0) and (1, 0):

Frame # 13 Slide # 20

・日・・ キャ・・ キャ

Second-Order Bandpass Biquad Cont'd

 \Rightarrow The transfer function of the bandpass biquad assumes the form:

$$H_{BP}(z) = \frac{(z+1)(z-1)}{z^2 - 2r(\cos \phi)z + r^2}$$

where 0 < r < 1.

イロト イロト イヨト イヨト ヨー わへの

Second-Order Bandpass Biquad Cont'd

⇒ As the poles move closer to the unit circle, the amplitude response develops a peak at frequency $\omega = \phi/T$ while the slope of the phase response tends to become steeper and steeper at that frequency.

Frame # 15 Slide # 22

A. Antoniou

Digital Filters - Secs. 5.6, 5.7

Second-Order Notch Biguad

 \Rightarrow A *notch* second-order transfer function can be constructed by placing a complex-conjugate pair of poles anywhere inside the unit circle, and a complex-conjugate pair of zeros on the unit circle.

There are three possibilities:

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Second-Order Notch Biquad Cont'd

 \Rightarrow The transfer function of the bandpass biquad assumes the form:

$$H_N(z) = \frac{z^2 - 2(\cos \psi)z + 1}{z^2 - 2r(\cos \phi)z + r^2}$$

where 0 < r < 1.

イロト イロト イヨト イヨト ヨー わへの

Second-Order Notch Biquad Cont'd

⇒ If $\psi = \pi/4$, $\psi = \pi/2$, or $\psi = 3\pi/4$, the notch filter behaves as a highpass, bandstop, or lowpass filter.

Frame # 18 Slide # 25

A. Antoniou

Digital Filters - Secs. 5.6, 5.7

Second-Order Allpass Biquad

⇒ An allpass second-order transfer function can be constructed by placing a complex-conjugate pair of poles anywhere inside the unit circle and a complex-conjugate pair of zeros that are the reciprocals of the poles outside the unit circle.

Frame # 19 Slide # 26

白 ト イヨト イヨト

 \Rightarrow The transfer function of the bandpass biquad assumes the form:

$$H_{AP}(z) = \frac{r^2 z^2 - 2r(\cos \phi)z + 1}{z^2 - 2r(\cos \phi)z + r^2}$$

where 0 < r < 1.

イロト イロト イヨト イヨト ヨー わへの

⇒ The transfer function of the bandpass biquad assumes the form:

$$H_{AP}(z) = \frac{r^2 z^2 - 2r(\cos \phi)z + 1}{z^2 - 2r(\cos \phi)z + r^2}$$

where 0 < r < 1.

 \Rightarrow We note that the numerator coefficients are the same as the denominator coefficients but in the reverse order.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

⇒ The transfer function of the bandpass biquad assumes the form:

$$H_{AP}(z) = \frac{r^2 z^2 - 2r(\cos \phi)z + 1}{z^2 - 2r(\cos \phi)z + r^2}$$

where 0 < r < 1.

- \Rightarrow We note that the numerator coefficients are the same as the denominator coefficients but in the reverse order.
- ⇒ The above is a general property, that is, an arbitrary transfer function with the above coefficient symmetry is an allpass transfer function independently of the order.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

$$\begin{split} &M_{AP}(\omega) \\ &= |H_{AP}(e^{j\omega T})| = \left[H_{AP}(e^{j\omega T}) \cdot H_{AP}^*(e^{j\omega T})\right]^{\frac{1}{2}} \\ &= \left[H_{AP}(e^{j\omega T}) \cdot H_{AP}(e^{-j\omega T})\right]^{\frac{1}{2}} \\ &= \left\{\left[H_{AP}(z) \cdot H_{AP}(z^{-1})\right]_{z=e^{j\omega T}}\right\}^{\frac{1}{2}} \\ &= \left\{\left[\frac{r^2 z^2 + 2r(\cos\phi)z + 1}{z^2 + 2r(\cos\phi)z + r^2} \cdot \frac{r^2 z^{-2} + 2r(\cos\phi)z^{-1} + 1}{z^{-2} + 2r(\cos\phi)z^{-1} + r^2}\right]_{z=e^{j\omega T}}\right\}^{\frac{1}{2}} \\ &= \left\{\left[\frac{r^2 z^2 + 2r(\cos\phi)z + 1}{z^2 + 2r(\cos\phi)z + r^2} \cdot \frac{r^2 + 2r(\cos\phi)z + z^2}{1 + 2r(\cos\phi)z + z^2}\right]_{z=e^{j\omega T}}\right\}^{\frac{1}{2}} = 1 \end{split}$$

Frame # 21 Slide # 30

◆□ → ◆□ → ◆臣 → ◆臣 → ○臣

High-Order Filters

⇒ Higher-order transfer functions can be obtained by forming products or sums of first- and/or second-order transfer functions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

High-Order Filters

- ⇒ Higher-order transfer functions can be obtained by forming products or sums of first- and/or second-order transfer functions.
- ⇒ Corresponding high-order filters can be constructed by connecting several biquads in cascade or in parallel.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

High-Order Filters

- ⇒ Higher-order transfer functions can be obtained by forming products or sums of first- and/or second-order transfer functions.
- ⇒ Corresponding high-order filters can be constructed by connecting several biquads in cascade or in parallel.
- ⇒ Methods for obtaining transfer functions that will yield specified frequency responses will be explored in later chapters.

 \Rightarrow In practice, a discrete-time system can distort the information content of a signal to be processed.

- \Rightarrow In practice, a discrete-time system can distort the information content of a signal to be processed.
- \Rightarrow Two types of distortion can be introduced as follows:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- \Rightarrow In practice, a discrete-time system can distort the information content of a signal to be processed.
- \Rightarrow Two types of distortion can be introduced as follows:
 - Amplitude distortion

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- \Rightarrow In practice, a discrete-time system can distort the information content of a signal to be processed.
- \Rightarrow Two types of distortion can be introduced as follows:
 - Amplitude distortion
 - Delay (or phase) distortion

イロン イロン イヨン イヨン 三日

⇒ Consider an application where a digital filter characterized by a transfer function H(z) is to be used to select a specific signal $x_k(nT)$ from a sum of signals

$$x(nT) = \sum_{i=1}^{m} x_i(nT)$$

⇒ Consider an application where a digital filter characterized by a transfer function H(z) is to be used to select a specific signal $x_k(nT)$ from a sum of signals

$$x(nT) = \sum_{i=1}^{m} x_i(nT)$$

⇒ Let the amplitude and phase responses of the filter be $M(\omega)$ and $\theta(\omega)$, respectively.

⇒ Consider an application where a digital filter characterized by a transfer function H(z) is to be used to select a specific signal $x_k(nT)$ from a sum of signals

$$x(nT) = \sum_{i=1}^{m} x_i(nT)$$

- ⇒ Let the amplitude and phase responses of the filter be $M(\omega)$ and $\theta(\omega)$, respectively.
- ⇒ Two parameters associated with the phase response are the *absolute delay* $\tau_a(\omega)$ and the *group delay* $\tau_g(\omega)$ which are defined as

$$au_{\mathsf{a}}(\omega) = -rac{ heta(\omega)}{\omega} \quad ext{and} \quad au_{\mathsf{g}}(\omega) = -rac{ heta heta(\omega)}{ heta\omega}$$

Frame # 24 Slide # 40

⇒ Consider an application where a digital filter characterized by a transfer function H(z) is to be used to select a specific signal $x_k(nT)$ from a sum of signals

$$x(nT) = \sum_{i=1}^{m} x_i(nT)$$

- ⇒ Let the amplitude and phase responses of the filter be $M(\omega)$ and $\theta(\omega)$, respectively.
- ⇒ Two parameters associated with the phase response are the *absolute delay* $\tau_a(\omega)$ and the *group delay* $\tau_g(\omega)$ which are defined as

$$au_{s}(\omega) = -rac{ heta(\omega)}{\omega} \hspace{0.3cm} ext{and} \hspace{0.3cm} au_{g}(\omega) = -rac{ heta heta(\omega)}{ heta\omega}$$

⇒ As functions of frequency, $\tau_a(\omega)$ and $\tau_g(\omega)$ are known as the *absolute-delay and group-delay characteristics*.

Frame # 24 Slide # 41

A. Antoniou Digital Filter

Digital Filters – Secs. 5.6, 5.7

(ロ) (同) (E) (E) (E) (E)

⇒ Now assume that the amplitude spectrum of signal $x_k(nT)$ is concentrated in frequency band *B* given by

$$B = \{\omega : \omega_L \le \omega \le \omega_H\}$$

as shown.

⇒ Now assume that the amplitude spectrum of signal $x_k(nT)$ is concentrated in frequency band *B* given by

$$B = \{\omega : \omega_L \le \omega \le \omega_H\}$$

as shown.

 \Rightarrow Also assume that the filter has amplitude and phase responses

$$M(\omega) = \begin{cases} G_0 & \text{for } \omega \in B \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad \theta(\omega) = -\tau_g \omega + \theta_0 \quad \text{for } \omega \in B \end{cases}$$

respectively, where G_0 and τ_g are constants.

 \Rightarrow The z transform of the output of the filter is given by

$$Y(z) = H(z)X(z) = H(z)\sum_{i=1}^{m} X_i(z) = \sum_{i=1}^{m} H(z)X_i(z)$$

 \Rightarrow The z transform of the output of the filter is given by

$$Y(z) = H(z)X(z) = H(z)\sum_{i=1}^{m} X_i(z) = \sum_{i=1}^{m} H(z)X_i(z)$$

⇒ Thus the frequency spectrum of the output signal is obtained as

$$egin{aligned} Y(e^{j\omega T}) &= \sum_{i=1}^m H(e^{j\omega T}) X_i(e^{j\omega T}) \ &= \sum_{i=1}^m M(\omega) e^{j heta(\omega)} X_i(e^{j\omega T}) \end{aligned}$$

Frame # 26 Slide # 45

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

$$Y(e^{j\omega T}) = \sum_{i=1}^{m} M(\omega) e^{j\theta(\omega)} X_i(e^{j\omega T})$$

 \Rightarrow We have assumed that

$$M(\omega) = \begin{cases} G_0 & \text{for } \omega \in B \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad \theta(\omega) = -\tau_g \omega + \theta_0 \quad \text{for } \omega \in B \end{cases}$$

and hence we get

$$Y(e^{j\omega T}) = G_0 e^{-j\omega \tau_g + j\theta_0} X_k(e^{j\omega T})$$

since all signal spectrums except $X_k(e^{j\omega T})$ will be multiplied by zero.

Frame # 27 Slide # 46

イロン イロン イヨン イヨン 三日

$$Y(e^{j\omega T}) = G_0 e^{-j\omega \tau_g + j\theta_0} X_k(e^{j\omega T})$$

 \Rightarrow If we now let $\tau_g = mT$ where *m* is a constant, we can write

$$Y(z) = G_0 e^{j\theta_0} z^{-m} X_k(z)$$

. .

$$Y(e^{j\omega T}) = G_0 e^{-j\omega \tau_g + j\theta_0} X_k(e^{j\omega T})$$

 \Rightarrow If we now let $\tau_g = mT$ where *m* is a constant, we can write

$$Y(z) = G_0 e^{j\theta_0} z^{-m} X_k(z)$$

 \Rightarrow Therefore, from the time-shifting theorem of the *z* transform, we deduce the output of the filter as

$$y(nT) = G_0 e^{j\theta_0} x_k (nT - mT)$$

Frame # 28 Slide # 48

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへの

$$Y(e^{j\omega T}) = G_0 e^{-j\omega \tau_g + j\theta_0} X_k(e^{j\omega T})$$

 \Rightarrow If we now let $\tau_g = mT$ where *m* is a constant, we can write

$$Y(z) = G_0 e^{j\theta_0} z^{-m} X_k(z)$$

 \Rightarrow Therefore, from the time-shifting theorem of the *z* transform, we deduce the output of the filter as

$$y(nT) = G_0 e^{j\theta_0} x_k (nT - mT)$$

⇒ In effect, if the *amplitude response* of the filter is *constant* with respect to frequency band *B* and zero elsewhere and its *phase response* is a *linear* function of ω , that is, the group delay is constant in frequency band *B*, then the output signal is a *delayed replica* of signal $x_k(nT)$ except that a constant multiplier $G_0 e^{j\theta_0}$ is introduced.

Frame # 28 Slide # 49

イロン イロン イヨン イヨン 三日

⇒ If the amplitude response of the system is not constant in frequency band B, then so-called *amplitude distortion* will be introduced since different frequency components of the signal will be amplified by different amounts.

- \Rightarrow If the amplitude response of the system is not constant in frequency band *B*, then so-called *amplitude distortion* will be introduced since different frequency components of the signal will be amplified by different amounts.
- ⇒ If the group delay is not constant in band B, different frequency components will be delayed by different amounts, and *delay (or phase) distortion* will be introduced.

Frame # 29 Slide # 51

 \Rightarrow Amplitude distortion can be quite objectionable in practice.

Consequently, the amplitude response is required to be flat to within a prescribed tolerance in each frequency band that carries information.

- ⇒ If the ultimate receiver of the signal is the human ear, e.g., when a speech or music signal is to be processed, delay distortion turns out to be quite tolerable.
- ⇒ In other applications where images are involved, e.g., transmission of video signals, delay distortion can be as objectionable as amplitude distortion, and the delay characteristic is required to be fairly flat.

This slide concludes the presentation. Thank you for your attention.