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Introduction

V Previous presentations dealt with the frequency response of
discrete-time systems, which is obtained by using the transfer
function.

V In this presentation, we examine some of the basic types of
transfer functions that characterize some typical first- and
second-order filter types known as biquads.

V Biquads are often used as basic digital-filter blocks to
construct high-order filters.
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First-Order Transfer Functions

V A first-order transfer function can have only a real zero and a
real pole, i.e.,

H(z) =
z − z0
z − p0

V To ensure that the system is stable, the pole must satisfy the
condition −1 < p0 < 1.

V The zero can be anywhere on the real axis of the z plane.
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First-Order Transfer Functions Cont’d

V If the pole is close to point (1, 0) and the zero is close to or
at point (−1, 0), then we have a lowpass filter.

V If the zero and pole positions are interchanged, then we get a
highpass filter.
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First-Order Transfer Functions Cont’d

V Certain applications require discrete-time systems that have a
constant amplitude response and a varying phase response.

Such systems can be constructed by using allpass transfer
functions.

V A first-order allpass transfer function is of the form

H(z) =
p0z − 1

z − p0
= p0

z − 1/p0
z − p0

where the zero is the reciprocal of the pole.

V The frequency response of a system characterized by H(z) is
given by

H(e jωT ) =
p0e

jωT − 1

e jωT − p0
=

p0 cosωT + jp0 sinωT − 1

cosωT + j sinωT − p0
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First-Order Transfer Functions Cont’d

· · ·
H(e jωT ) =

p0e
jωT − 1

e jωT − p0
=

p0 cosωT + jp0 sinωT − 1

cosωT + j sinωT − p0

V The amplitude and phase responses are given by

M(ω) =

∣∣∣∣p0 cosωT − 1 + jp0 sinωT

cosωT − p0 + j sinωT

∣∣∣∣
=

[
(p0 cosωT − 1)2 + (p0 sinωT )2

(cosωT − p0)2 + (sinωT )2

] 1
2

= 1

and

θ(ω) = tan−1 p0 sinωT

p0 cosωT − 1
− tan−1 sinωT

cosωT − p0

respectively.
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Second-Order Lowpass Biquad

V A lowpass second-order transfer function can be constructed
by placing a complex-conjugate pair of poles anywhere inside
the unit circle and a pair of zeros at the Nyquist point:
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Second-Order Lowpass Biquad Cont’d

V The transfer function of the lowpass biquad assumes the form:

HLP(z) =
(z + 1)2

(z − re jφ)(z − re−jφ)
=

z2 + 2z + 1

z2 − 2r(cosφ)z + r2

where 0 < r < 1.
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Second-Order Lowpass Biquad Cont’d

V As the poles move closer to the unit circle, the amplitude
response develops a peak at frequency ω = φ/T while the
slope of the phase response tends to become steeper and
steeper at that frequency.
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Second-Order Highpass Biquad

V A highpass second-order transfer function can be constructed
by placing a complex-conjugate pair of poles anywhere inside
the unit circle and a pair of zeros at point (1, 0):
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Second-Order Highpass Biquad Cont’d

V The transfer function of the highpass biquad assumes the
form:

HHP(z) =
(z − 1)2

z2 − 2r(cosφ)z + r2
=

(z2 − 2z + 1)

z2 − 2r(cosφ)z + r2

where 0 < r < 1.
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Second-Order Highpass Biquad Cont’d

V As the poles move closer to the unit circle, the amplitude response
develops a peak at frequency ω = φ/T while the slope of the phase
response tends to become steeper and steeper at that frequency.
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Second-Order Bandpass Biquad

V A bandpass second-order transfer function can be constructed
by placing a complex-conjugate pair of poles anywhere inside
the unit circle, zeros at points (-1, 0) and (1, 0):

−2 −1 0 1 2
−2

−1

0

1

2

Re z

 j
I
m

 z

Frame # 13 Slide # 20 A. Antoniou Digital Filters – Secs. 5.6, 5.7



Second-Order Bandpass Biquad Cont’d

V The transfer function of the bandpass biquad assumes the
form:

HBP(z) =
(z + 1)(z − 1)

z2 − 2r(cosφ)z + r2

where 0 < r < 1.
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Second-Order Bandpass Biquad Cont’d

V As the poles move closer to the unit circle, the amplitude response
develops a peak at frequency ω = φ/T while the slope of the phase
response tends to become steeper and steeper at that frequency.
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Second-Order Notch Biquad

V A notch second-order transfer function can be constructed by
placing a complex-conjugate pair of poles anywhere inside the
unit circle, and a complex-conjugate pair of zeros on the unit
circle.

There are three possibilities:
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Second-Order Notch Biquad Cont’d

V The transfer function of the bandpass biquad assumes the
form:

HN(z) =
z2 − 2(cosψ)z + 1

z2 − 2r(cosφ)z + r2

where 0 < r < 1.
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Second-Order Notch Biquad Cont’d

V If ψ = π/4, ψ = π/2, or ψ = 3π/4, the notch filter behaves as a
highpass, bandstop, or lowpass filter.
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Second-Order Allpass Biquad

V An allpass second-order transfer function can be constructed
by placing a complex-conjugate pair of poles anywhere inside
the unit circle and a complex-conjugate pair of zeros that are
the reciprocals of the poles outside the unit circle.
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Second-Order Allpass Biquad Cont’d

V The transfer function of the bandpass biquad assumes the
form:

HAP(z) =
r2z2 − 2r(cosφ)z + 1

z2 − 2r(cosφ)z + r2

where 0 < r < 1.

V We note that the numerator coefficients are the same as the
denominator coefficients but in the reverse order.

V The above is a general property, that is, an arbitrary transfer
function with the above coefficient symmetry is an allpass
transfer function independently of the order.
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Second-Order Allpass Biquad Cont’d

MAP(ω)

= |HAP(e jωT )| =
[
HAP(e jωT ) · H∗

AP(e jωT )
] 1
2

=
[
HAP(e jωT ) · HAP(e−jωT )

] 1
2

=
{[
HAP(z) · HAP(z−1)

]
z=e jωT

} 1
2

=

{[
r2z2 + 2r(cosφ)z + 1

z2 + 2r(cosφ)z + r2
· r

2z−2 + 2r(cosφ)z−1 + 1

z−2 + 2r(cosφ)z−1 + r2

]
z=e jωT

} 1
2

=

{[
r2z2 + 2r(cosφ)z + 1

z2 + 2r(cosφ)z + r2
· r

2 + 2r(cosφ)z + z2

1 + 2r(cosφ)z + z2r2

]
z=e jωT

} 1
2

= 1
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High-Order Filters

V Higher-order transfer functions can be obtained by forming
products or sums of first- and/or second-order transfer
functions.

V Corresponding high-order filters can be constructed by
connecting several biquads in cascade or in parallel.

V Methods for obtaining transfer functions that will yield
specified frequency responses will be explored in later chapters.
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Amplitude and Delay Distortion

V In practice, a discrete-time system can distort the information
content of a signal to be processed.

V Two types of distortion can be introduced as follows:

– Amplitude distortion
– Delay (or phase) distortion
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Amplitude and Delay Distortion Cont’d

V Consider an application where a digital filter characterized by a
transfer function H(z) is to be used to select a specific signal
xk(nT ) from a sum of signals

x(nT ) =
m∑
i=1

xi (nT )

V Let the amplitude and phase responses of the filter be M(ω) and
θ(ω), respectively.

V Two parameters associated with the phase response are the absolute
delay τa(ω) and the group delay τg (ω) which are defined as

τa(ω) = −θ(ω)

ω
and τg (ω) = −dθ(ω)

dω

V As functions of frequency, τa(ω) and τg (ω) are known as the
absolute-delay and group-delay characteristics.
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Amplitude and Delay Distortion Cont’d

V Now assume that the amplitude spectrum of signal xk(nT ) is
concentrated in frequency band B given by

B = {ω : ωL ≤ ω ≤ ωH}

as shown.

V Also assume that the filter has amplitude and phase responses

M(ω) =

{
G0 for ω ∈ B

0 otherwise
and θ(ω) = −τgω + θ0 for ω ∈ B

respectively, where G0 and τg are constants.

ωL ωH

|X(e
jωT

)| |Xk(e
jωT)|

B ω
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Amplitude and Delay Distortion Cont’d

V The z transform of the output of the filter is given by

Y (z) = H(z)X (z) = H(z)
m∑
i=1

Xi (z) =
m∑
i=1

H(z)Xi (z)

V Thus the frequency spectrum of the output signal is obtained
as

Y (e jωT ) =
m∑
i=1

H(e jωT )Xi (e
jωT )

=
m∑
i=1

M(ω)e jθ(ω)Xi (e
jωT )

Frame # 26 Slide # 44 A. Antoniou Digital Filters – Secs. 5.6, 5.7



Amplitude and Delay Distortion Cont’d

V The z transform of the output of the filter is given by

Y (z) = H(z)X (z) = H(z)
m∑
i=1

Xi (z) =
m∑
i=1

H(z)Xi (z)

V Thus the frequency spectrum of the output signal is obtained
as

Y (e jωT ) =
m∑
i=1

H(e jωT )Xi (e
jωT )

=
m∑
i=1

M(ω)e jθ(ω)Xi (e
jωT )

Frame # 26 Slide # 45 A. Antoniou Digital Filters – Secs. 5.6, 5.7



Amplitude and Delay Distortion Cont’d

· · ·
Y (e jωT ) =

m∑
i=1

M(ω)e jθ(ω)Xi (e
jωT )

V We have assumed that

M(ω) =

{
G0 for ω ∈ B

0 otherwise
and θ(ω) = −τgω+θ0 for ω ∈ B

and hence we get

Y (e jωT ) = G0e
−jωτg+jθ0Xk(e jωT )

since all signal spectrums except Xk(e jωT ) will be multiplied
by zero.
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Amplitude and Delay Distortion Cont’d

· · ·
Y (e jωT ) = G0e

−jωτg+jθ0Xk(e jωT )

V If we now let τg = mT where m is a constant, we can write

Y (z) = G0e
jθ0z−mXk(z)

V Therefore, from the time-shifting theorem of the z transform, we
deduce the output of the filter as

y(nT ) = G0e
jθ0xk(nT −mT )

V In effect, if the amplitude response of the filter is constant with
respect to frequency band B and zero elsewhere and its phase
response is a linear function of ω, that is, the group delay is constant
in frequency band B, then the output signal is a delayed replica of
signal xk(nT ) except that a constant multiplier G0e

jθ0 is introduced.
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signal xk(nT ) except that a constant multiplier G0e

jθ0 is introduced.
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Amplitude and Delay Distortion Cont’d

· · ·
Y (e jωT ) = G0e

−jωτg+jθ0Xk(e jωT )

V If we now let τg = mT where m is a constant, we can write

Y (z) = G0e
jθ0z−mXk(z)

V Therefore, from the time-shifting theorem of the z transform, we
deduce the output of the filter as

y(nT ) = G0e
jθ0xk(nT −mT )

V In effect, if the amplitude response of the filter is constant with
respect to frequency band B and zero elsewhere and its phase
response is a linear function of ω, that is, the group delay is constant
in frequency band B, then the output signal is a delayed replica of
signal xk(nT ) except that a constant multiplier G0e

jθ0 is introduced.
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Amplitude and Delay Distortion Cont’d

V If the amplitude response of the system is not constant in
frequency band B, then so-called amplitude distortion will be
introduced since different frequency components of the signal
will be amplified by different amounts.

V If the group delay is not constant in band B, different
frequency components will be delayed by different amounts,
and delay (or phase) distortion will be introduced.
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Amplitude and Delay Distortion Cont’d

V If the amplitude response of the system is not constant in
frequency band B, then so-called amplitude distortion will be
introduced since different frequency components of the signal
will be amplified by different amounts.

V If the group delay is not constant in band B, different
frequency components will be delayed by different amounts,
and delay (or phase) distortion will be introduced.
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Amplitude and Delay Distortion Cont’d

V Amplitude distortion can be quite objectionable in practice.

Consequently, the amplitude response is required to be flat to
within a prescribed tolerance in each frequency band that
carries information.

V If the ultimate receiver of the signal is the human ear, e.g.,
when a speech or music signal is to be processed, delay
distortion turns out to be quite tolerable.

V In other applications where images are involved, e.g.,
transmission of video signals, delay distortion can be as
objectionable as amplitude distortion, and the delay
characteristic is required to be fairly flat.
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This slide concludes the presentation.

Thank you for your attention.
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