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® Various time-domain and frequency-domain relationships exist
between continuous-time and discrete-time signals.
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® Various time-domain and frequency-domain relationships exist
between continuous-time and discrete-time signals.

m These relationships are developed by defining a special class of
signals known as impulse-modulated signals which comprise
sequences of continuous-time impulse functions.
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Introduction

B Various time-domain and frequency-domain relationships exist
between continuous-time and discrete-time signals.

B These relationships are developed by defining a special class of
signals known as impulse-modulated signals which comprise
sequences of continuous-time impulse functions.

B |mpulse-modulated signals are essentially continuous-time signals
but simultaneously they are also sampled signals.

Therefore, on the one hand, they have Fourier transforms and, on
the other, they can be represented by z transforms.

Consequently, impulse-modulated signals can serve as a
mathematical bridge between continuous-time and discrete-time
signals that facilitates the derivations of the various relationships
between the two classes of signals.
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® An impulse modulated-signal, denoted as X(t), can be
ideal impulse modulator.

generated by sampling a continuous-time signal x(t) using an
Impulse modulator

\
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® An impulse modulator is characterized by the equation

where ¢(t) is a carrier given by

X(t) = c(t)x(t)

c(t) = Z 5(t—nT)

n=—0o0o
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® An impulse modulator is characterized by the equation

where ¢(t) is a carrier given by

X(t) = c(t)x(t)

c(t) =
m Hence

Z 5(t—nT)

n=—0o0o

)=x(t) > §(t—nT)

n=—0o0
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® An impulse modulator is characterized by the equation

where ¢(t) is a carrier given by

X(t) = c(t)x(t)

c(t) =
m Hence

Z 5(t—nT)

n=—0o0o

oo
)=x(t) > §(t—nT)
n=—o00
® From the properties of the unit impulse function, we get

oo
X(t) =
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> x(nT)s(t —nT)
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The input and output of an impulse modulator are as follows:

x(1)
\_/ /";kn )
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impulses.

® Impulse-modulated signals are sequences of continuous-time
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impulses.

impulses by numbers.

m They can be converted to discrete-time signals by replacing

® Impulse-modulated signals are sequences of continuous-time
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impulses.

impulses by numbers.

® Impulse-modulated signals are sequences of continuous-time

m They can be converted to discrete-time signals by replacing

m On the other hand, impulse-modulated signals can be obtained
from discrete-time signals by replacing numbers by impulses.
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®m An impulse-modulated signal is both a continuous-time as well

as a sampled signal, as was stated earlier, and this dual
personality will immediately prove very useful.
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®m An impulse-modulated signal is both a continuous-time as well

as a sampled signal, as was stated earlier, and this dual
personality will immediately prove very useful.

a Fourier transform given by

m As a continuous-time signal, an impulse-modulated signal has

n=—oo

o0

X(jw) =F Y x(nT)s(t—nT) =

[e.9]

> x(nT)Fs(t—nT)
> x(nT)e T
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where
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o0

X(jw)= > x(nT)e "

n=—oo

B Therefore, from the definition of the z transform we note that

X(jw) = Xo(2)

z—eiwT

Xp(z) = Zx(nT)

(A)
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o0

n=—oo

X(jw)= > x(nT)e "

where

X(jw) = Xo(2)

B Therefore, from the definition of the z transform we note that

z—eiwT

Xp(z) = Zx(nT)

(A)

m In effect, the Fourier transform of impulse-modulated signal %(t) is
numerically equal to the z transform of the corresponding

discrete-time signal x(nT) evaluated on the unit circle |z| = 1.
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Frame # 9

o0

X(jw)= > x(nT)e "

n=—oo

Therefore, from the definition of the z transform we note that

X(jw) = Xo(2)

z—eiwT

where
Xp(z) = Zx(nT) (A)

In effect, the Fourier transform of impulse-modulated signal X(t) is
numerically equal to the z transform of the corresponding
discrete-time signal x(nT) evaluated on the unit circle |z| = 1.

In other words, the frequency spectrum of X(t) is equal to that of
x(nT).
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The continuous-time signal

4

fort < —35s

for =35 <t<-25
for =25 <t<?25
for25 <t<35

for t > 3.5

x
—~
~
N
I
o = N = O

\
is subjected to impulse modulation.

Find the frequency spectrum of X(t) in closed form assuming a
sampling frequency of 27 rad/s.
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Example Cont'd

The frequency spectrum of an impulse-modulated signal, %(t),
can be readily obtained by evaluating the z transform of x(nT) on the
unit circle of the z plane.

The impulse-modulated version of x(t) can be expressed as

R(t) = 0(t+3T)+20(t+2T)+26(t+ T) +26(0)
+20(t — T)+26(t —2T)+(t —3T)

where T =1 s.

A corresponding discrete-time signal can be obtained by replacing
impulses by numbers as

x(nT) = §(nT +3T)+25(nT +2T) +25(nT + T) + 26(0)
+26(nT — T) +28(nT —2T) +6(nT — 3T)

Hence XD(Z) = Zx(t) = 23 + 222 + 221 + 24+ 22*1 + 2272 4 273
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Xp(z) = Zx(t) =22 + 222 + 228 4+ 24227 4 2772 4 773
given by

Since the frequency spectrum of an impulse-modulated signal is
we get

X(jw) = Xp(T)

X(jw) = Xp(eT)

—_ (ej3wT+e—j3wT)+2(ej2wT+e—j2wT)
+2(e/*T +eT) 42
=2cos3wT +4cos2wT +4coswT +2 =
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The continuous-time signal

x(t) = u(t)e 'sin2t
is subjected to impulse modulation.

Find the frequency spectrum of X(t) in closed form assuming a
sampling frequency of 27 rad/s.
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Solution A discrete-time signal can be readily derived from x(t) by
replacing t by nT as

1. .
x(nT) = u(nT)e ""sin2nT = u(nT)e " x 2—j(e’2”T —e 2T

— U(nT)zij(enT(_l—HQ) _ enT(—l—jZ))

Since T = 27/ws = 1 s, the table of z transforms gives

1 z z
Xp(z) = 2j (Z_ o112 7 _ e—1—jz>

and after some manipulation

ze Lsin2

X =
b(2) z2 —2ze lcos2 4 e—2
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ze -sin2
Xp(z) =
given by

22 —2ze=lcos2 + e2
Since the frequency spectrum of an impulse-modulated signal is

we get

X(jw) = Xp(e*T)

~ : ef“~Lsin2
. _ wTy _
X(jw) = Xp(e™7) = e2iw — 2ajw—1 cos2 + 2
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must be related to that spectrum of the continuous-time
signal from which it was derived.

m As may be expected, the spectrum of a discrete-time signal
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must be related to that spectrum of the continuous-time
signal from which it was derived.

m As may be expected, the spectrum of a discrete-time signal

m This relationship can be established by using Poisson's
summation formula.
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o0

= Consider a signal x(t) with a Fourier transform X(jw).

Poisson’s summation formula states that

D> x(t+nT)=

where ws =270/ T.

n=-—oo

I o= o/
T Z X (jnws)emst
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= Consider a signal x(t) with a Fourier transform X(jw).
Poisson’s summation formula states that
o0
D> x(t+nT)=
n=—o00

n=—o00
where ws =270/ T.

I o= o/
T Z X (jnws)emst

o0

m If t =0 and x(t) is a two-sided signal, we have

Z x(nT) =
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n=—o0

% Z X(jnws)

(B)
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n=0
where

x(0+)

o Z x(t+nT) Z X (jnws ) e/mst
n=—o0 n=—o0
m If t =0 and x(t) is a right-sided signal, i.e., x(t) = 0 for
t <0, then

n=—oo

T Z X (jnws)
() =

x(0—) + x(0+)

2
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_ x(0+)

2
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n=0
where

x(0+)

o Z x(t+nT) Z X (jnws ) e/mst
n=—o0 n=—o0
m If t =0 and x(t) is a right-sided signal, i.e., x(t) = 0 for
t <0, then

T Z X (jnws)
n=—oo
lim x(t) = x(0=) +x(0+)
t—0
m Note

2
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x(0+)
2
In Fourier analysis, the value of a time function at a
discontinuity is always taken to be the average of the left and
right limits (see textbook).
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= Given a continuous-time signal x(t) with a Fourier transform
X(jw), then from the frequency-shifting theorem we have

x(t)e ™0t 5 X(jwg + jw)
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= Given a continuous-time signal x(t) with a Fourier transform
X(jw), then from the frequency-shifting theorem we have

x(t)e ™0t 5 X(jwg + jw)
m From Poisson’s summation formula, we get

o0

. 1 &
T —jwonT _ — X(j :
n;mX(n Je Tn;w (jwo + jnws)

where ws = 27/ T and if we now replace wg by w, we deduce
the important relationship

D x(nT)e T = = 3 7 X(jw + jinws)
n=—o00
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n=—oo
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o

Z x(nT)e 4T = % Z X(jw + jnws)

n=—oo n=—0oo

B It was shown earlier that

X(jw) = Xp(eT) = Z x(nT)e=«nT
and hence X(jw) = Xp(e“T) = Z X(jw + jnws)

m Therefore, the frequency spectrum of the impulse-modulated signal
X(t) is numerically equal to the frequency spectrum of discrete-time
signal x(nT) and the two can be uniquely determined from the
frequency spectrum of the continuous-time signal x(t), namely,

X(jw).
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m As is to be expected, X(jw) is a periodic function of w with
signals is periodic.

period ws since the frequency spectrum of discrete-time
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m As is to be expected, X(jw) is a periodic function of w with
period ws since the frequency spectrum of discrete-time
signals is periodic.

m To check this out, we can replace jw by jw + jmws in

. 1 & o
X(jw) = T E X(jw + jnws)
to obtain

n=—oo

A

X(jw + jmws) =

n=—0o0o

= 0 Xljwr+ jm+ n)e]

1 o oo
=z E X(jw + jn'ws) = X(jw)
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m For a right-sided signal, x(t) = 0 for t < 0—, and hence the
impulse-modulated signal assumes the form

A

X(t) =

x(nT)é(t —nT)
n=0
where x(0) = x(0+).

oo
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m For a right-sided signal, x(t) = 0 for t < 0—, and hence the
impulse-modulated signal assumes the form

A

X(t) =

x(nT)é(t —nT)
n=0
where x(0) = x(0+).

oo

oo

®m The Fourier transform of the signal is given by

n=0

)A((Jw) = ZX(nT)e_j‘”"T = Xp(e*T)
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m For a right-sided signal, x(t) = 0 for t < 0—, and hence the
impulse-modulated signal assumes the form

A

X(t) =

x(nT)é(t —nT)
n=0
where x(0) = x(0+)

oo

®m The Fourier transform of the signal is given by

(oo}
X(jw) =Y " x(nT)e T = Xp(eT)
n=0
B Thus Poisson's summation formula gives
- 0
R(jw) = Xp(eTy = X 2+)
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Z X(jw + jnws)

n=—oo
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- . 0 1
R(jw) = Xp(e#T) = XL 2+) + =
m By letting jw = s and e®
the s domain as

Z X(jw + jnws)
X(s) =

Xp(2) =

(©)
x(0+)

=z, Eq. (C) can be expressed in
X(t), respectively.

T Z X(s + jnws)

n=—o00
where X(s) and X(s) are the Laplace transforms of x(t) and
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Sy o jwTy X(0+) 1 ad
X(jw) = Xp(e") = = T
m By letting jw = s and e®
the s domain as

+ = Z X(jw + jnws)
X(s) =

Xp(2) =

(©)
x(0+)

=z, Eq. (C) can be expressed in
X(t), respectively.

T Z X(s + jnws)
n=—o00
where X(s) and X(s) are the Laplace transforms of x(t) and
filters based on analog filters
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m This relationship will be used in Chap. 12 to design digital
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gives

XD(eij

Find X (jw) if x(t) = coswot.
Solution From the table of Fourier transforms (Table 3.2), we have
Hence Poisson’s summation formula, i.e

F coswot = [d(w + wo) + d(w — wp)]
X(jw) =

Z X(jw + jnws)
n_—oo

X(jw) =

n=—0o0
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Z [0(w + nws 4+ wp) + d(w + nws —wp)] =
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Find X(jw) if x(t) = u(t)e "

Solution From the table of Fourier transforms (Table 3.2),

1

14+ jw
Since x(t) = 0 for t < 0 in this case, we need to use the second form of
Poisson’s summation formula, i.e.,

X(jw) = Flu(t)e T =

X(jw) = Xp(eT) = X—(g” +

1 o0

—0o0

T :Z X(jw + jnws)

n:
The initial-value theorem of the Laplace transform gives

x(0+) = lim [sX(s)] = lim
~ . 1
and hence X(jw) = 2

S
=1
1+s

I o 1

T
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1+ j(w + nws)
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This slide concludes the presentation.
Thank you for your attention.

Frame # 29 Slide # 46 A. Antoniou  Digital Filters — Secs. 62



