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Introduction

Various time-domain and frequency-domain relationships exist
between continuous-time and discrete-time signals.

These relationships are developed by defining a special class of
signals known as impulse-modulated signals which comprise
sequences of continuous-time impulse functions.

Impulse-modulated signals are essentially continuous-time signals
but simultaneously they are also sampled signals.

Therefore, on the one hand, they have Fourier transforms and, on
the other, they can be represented by z transforms.

Consequently, impulse-modulated signals can serve as a
mathematical bridge between continuous-time and discrete-time
signals that facilitates the derivations of the various relationships
between the two classes of signals.
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Impulse-Modulated Signals

An impulse modulated-signal, denoted as x̂(t), can be
generated by sampling a continuous-time signal x(t) using an
ideal impulse modulator.

c(t)

x(t)

Impulse modulator

x(t)ˆ (a)
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Impulse-Modulated Signals Cont’d

An impulse modulator is characterized by the equation

x̂(t) = c(t)x(t)

where c(t) is a carrier given by

c(t) =
∞∑

n=−∞
δ(t − nT )

Hence

x̂(t) = x(t)
∞∑

n=−∞
δ(t − nT )

From the properties of the unit impulse function, we get

x̂(t) =
∞∑

n=−∞
x(nT )δ(t − nT )
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Impulse-Modulated Signals Cont’d

The input and output of an impulse modulator are as follows:

c(t)×

(d)

kT
t

x(kT)

= x(t)ˆ

(b)

(c)

t

kT

1

x(t)

x(kT)

kT
t
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Relationship between Impulse-Modulated and
Discrete-Time Signals

Impulse-modulated signals are sequences of continuous-time
impulses.

They can be converted to discrete-time signals by replacing
impulses by numbers.

On the other hand, impulse-modulated signals can be obtained
from discrete-time signals by replacing numbers by impulses.
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Relationship between Impulse-Modulated and
Discrete-Time Signals Cont’d

x(nT)

kT
nT

x(kT)
(e)

(d)

kT
t

x(kT)

x(t)ˆ
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Relationship between Fourier Transform and Z Transform

An impulse-modulated signal is both a continuous-time as well
as a sampled signal, as was stated earlier, and this dual
personality will immediately prove very useful.

As a continuous-time signal, an impulse-modulated signal has
a Fourier transform given by

X̂ (jω) = F
∞∑

n=−∞
x(nT )δ(t − nT ) =

∞∑
n=−∞

x(nT )Fδ(t − nT )

=
∞∑

n=−∞
x(nT )e−jωnT
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Relationship between Fourier Transform and Z Transform
Cont’d

· · ·
X̂ (jω) =

∞∑
n=−∞

x(nT )e−jωnT

Therefore, from the definition of the z transform we note that

X̂ (jω) = XD(z)
∣∣∣
z=e jωT

where
XD(z) = Zx(nT ) (A)

In effect, the Fourier transform of impulse-modulated signal x̂(t) is
numerically equal to the z transform of the corresponding
discrete-time signal x(nT ) evaluated on the unit circle |z | = 1.

In other words, the frequency spectrum of x̂(t) is equal to that of
x(nT ).
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Example

The continuous-time signal

x(t) =



0 for t < −3.5 s

1 for −3.5 ≤ t < −2.5

2 for −2.5 ≤ t < 2.5

1 for 2.5 ≤ t ≤ 3.5

0 for t > 3.5

is subjected to impulse modulation.

Find the frequency spectrum of x̂(t) in closed form assuming a
sampling frequency of 2π rad/s.
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Example Cont’d

Solution The frequency spectrum of an impulse-modulated signal, x̂(t),
can be readily obtained by evaluating the z transform of x(nT ) on the
unit circle of the z plane.

The impulse-modulated version of x(t) can be expressed as

x̂(t) = δ(t + 3T ) + 2δ(t + 2T ) + 2δ(t + T ) + 2δ(0)

+2δ(t − T ) + 2δ(t − 2T ) + δ(t − 3T )

where T = 1 s.

A corresponding discrete-time signal can be obtained by replacing
impulses by numbers as

x(nT ) = δ(nT + 3T ) + 2δ(nT + 2T ) + 2δ(nT + T ) + 2δ(0)

+2δ(nT − T ) + 2δ(nT − 2T ) + δ(nT − 3T )

Hence XD(z) = Zx(t) = z3 + 2z2 + 2z1 + 2 + 2z−1 + 2z−2 + z−3
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Example Cont’d

· · ·
XD(z) = Zx(t) = z3 + 2z2 + 2z1 + 2 + 2z−1 + 2z−2 + z−3

Since the frequency spectrum of an impulse-modulated signal is
given by

X̂ (jω) = XD(e jωT )

we get

X̂ (jω) = XD(e jωT )

= (e j3ωT + e−j3ωT ) + 2(e j2ωT + e−j2ωT )

+ 2(e jωT + e−jωT ) + 2

= 2 cos 3ωT + 4 cos 2ωT + 4 cosωT + 2
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Example

The continuous-time signal

x(t) = u(t)e−t sin 2t

is subjected to impulse modulation.

Find the frequency spectrum of x̂(t) in closed form assuming a
sampling frequency of 2π rad/s.
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Example Cont’d

Solution A discrete-time signal can be readily derived from x(t) by
replacing t by nT as

x(nT ) = u(nT )e−nT sin 2nT = u(nT )e−nT × 1

2j

(
e j2nT − e−j2nT

)
= u(nT )

1

2j

(
enT (−1+j2) − enT (−1−j2))

Since T = 2π/ωs = 1 s, the table of z transforms gives

XD(z) =
1

2j

(
z

z − e−1+j2
− z

z − e−1−j2

)
and after some manipulation

XD(z) =
ze−1 sin 2

z2 − 2ze−1 cos 2 + e−2
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Example Cont’d

· · ·
XD(z) =

ze−1 sin 2

z2 − 2ze−1 cos 2 + e−2

Since the frequency spectrum of an impulse-modulated signal is
given by

X̂ (jω) = XD(e jωT )

we get

X̂ (jω) = XD(e jωT ) =
e jω−1 sin 2

e2jω − 2e jω−1 cos 2 + e−2
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Poisson’s Summation Formula

As may be expected, the spectrum of a discrete-time signal
must be related to that spectrum of the continuous-time
signal from which it was derived.

This relationship can be established by using Poisson’s
summation formula.
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Poisson’s Summation Formula Cont’d

Consider a signal x(t) with a Fourier transform X (jω).

Poisson’s summation formula states that

∞∑
n=−∞

x(t + nT ) =
1

T

∞∑
n=−∞

X (jnωs)e jnωs t

where ωs = 2π/T .

If t = 0 and x(t) is a two-sided signal, we have

∞∑
n=−∞

x(nT ) =
1

T

∞∑
n=−∞

X (jnωs) (B)
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Poisson’s Summation Formula Cont’d

· · · ∞∑
n=−∞

x(t + nT ) =
1

T

∞∑
n=−∞

X (jnωs)e jnωs t

If t = 0 and x(t) is a right-sided signal, i.e., x(t) = 0 for
t < 0, then

∞∑
n=0

x(nT ) =
x(0+)

2
+

1

T

∞∑
n=−∞

X (jnωs)

where

lim
t→0

x(t) =
x(0−) + x(0+)

2
=

x(0+)

2

Note: In Fourier analysis, the value of a time function at a
discontinuity is always taken to be the average of the left and
right limits (see textbook).
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Poisson’s Summation Formula Cont’d
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Poisson’s Summation Formula Cont’d

ω

ω

ωs−ωs

−ωs ωs

2ωs−2ωs

−2ωs 2ωs

3ωs−3ωs

−3ωs 3ωs

|X
(j

ω
)|

ar
g
 x

(j
ω

),
 r

ad
/s
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0
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0
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Spectral Relationship between Discrete-Time and
Continuous-Time Signals

Given a continuous-time signal x(t) with a Fourier transform
X (jω), then from the frequency-shifting theorem we have

x(t)e−jω0t ↔ X (jω0 + jω)

From Poisson’s summation formula, we get

∞∑
n=−∞

x(nT )e−jω0nT =
1

T

∞∑
n=−∞

X (jω0 + jnωs)

where ωs = 2π/T and if we now replace ω0 by ω, we deduce
the important relationship

∞∑
n=−∞

x(nT )e−jωnT =
1

T

∞∑
n=−∞

X (jω + jnωs)
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Spectral Relationship Cont’d

· · ·
∞∑

n=−∞
x(nT )e−jωnT =

1

T

∞∑
n=−∞

X (jω + jnωs)

It was shown earlier that

X̂ (jω) = XD(e jωT ) =
∞∑

n=−∞
x(nT )e−jωnT

and hence X̂ (jω) = XD(e jωT ) =
1

T

∞∑
n=−∞

X (jω + jnωs)

Therefore, the frequency spectrum of the impulse-modulated signal
x̂(t) is numerically equal to the frequency spectrum of discrete-time
signal x(nT ) and the two can be uniquely determined from the
frequency spectrum of the continuous-time signal x(t), namely,
X (jω).
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Spectral Relationship Cont’d

As is to be expected, X̂ (jω) is a periodic function of ω with
period ωs since the frequency spectrum of discrete-time
signals is periodic.

To check this out, we can replace jω by jω + jmωs in

X̂ (jω) =
1

T

∞∑
n=−∞

X (jω + jnωs)

to obtain

X̂ (jω + jmωs) =
1

T

∞∑
n=−∞

X [jω + j(m + n)ωs ]

=
1

T

∞∑
n′=−∞

X (jω + jn′ωs) = X̂ (jω)
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Spectral Relationship Cont’d
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Spectral Relationship Cont’d

For a right-sided signal, x(t) = 0 for t ≤ 0−, and hence the
impulse-modulated signal assumes the form

x̂(t) =
∞∑
n=0

x(nT )δ(t − nT )

where x(0) ≡ x(0+).

The Fourier transform of the signal is given by

X̂ (jω) =
∞∑
n=0

x(nT )e−jωnT = XD(e jωT )

Thus Poisson’s summation formula gives

X̂ (jω) = XD(e jωT ) =
x(0+)

2
+

1

T

∞∑
n=−∞

X (jω + jnωs) (C)
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Spectral Relationship Cont’d

For a right-sided signal, x(t) = 0 for t ≤ 0−, and hence the
impulse-modulated signal assumes the form

x̂(t) =
∞∑
n=0

x(nT )δ(t − nT )

where x(0) ≡ x(0+).

The Fourier transform of the signal is given by

X̂ (jω) =
∞∑
n=0

x(nT )e−jωnT = XD(e jωT )

Thus Poisson’s summation formula gives

X̂ (jω) = XD(e jωT ) =
x(0+)

2
+

1

T

∞∑
n=−∞

X (jω + jnωs) (C)

Frame # 23 Slide # 38 A. Antoniou Digital Filters – Secs. 6.2



Spectral Relationship Cont’d
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Spectral Relationship Cont’d

· · ·
X̂ (jω) = XD(e jωT ) =

x(0+)

2
+

1

T

∞∑
n=−∞

X (jω + jnωs) (C)

By letting jω = s and esT = z , Eq. (C) can be expressed in
the s domain as

X̂ (s) = XD(z) =
x(0+)

2
+

1

T

∞∑
n=−∞

X (s + jnωs)

where X (s) and X̂ (s) are the Laplace transforms of x(t) and
x̂(t), respectively.

This relationship will be used in Chap. 12 to design digital
filters based on analog filters.
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Spectral Relationship Cont’d
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Example

Find X̂ (jω) if x(t) = cosω0t.

Solution From the table of Fourier transforms (Table 3.2), we have

X (jω) = F cosω0t = π[δ(ω + ω0) + δ(ω − ω0)]

Hence Poisson’s summation formula, i.e.,

X̂ (jω) = XD(e jωT ) =
1

T

∞∑
n=−∞

X (jω + jnωs)

gives

X̂ (jω) =
π

T

∞∑
n=−∞

[δ(ω + nωs + ω0) + δ(ω + nωs − ω0)]
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Example Cont’d

|X( jω)|

−2ωs
−ωs

−ω0 ω0 ωs 2ωs

(a)

^
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Example

Find X̂ (jω) if x(t) = u(t)e−t .

Solution From the table of Fourier transforms (Table 3.2),

X (jω) = F [u(t)e−t ] =
1

1 + jω

Since x(t) = 0 for t < 0 in this case, we need to use the second form of
Poisson’s summation formula, i.e.,

X̂ (jω) = XD(e jωT ) =
x(0+)

2
+

1

T

∞∑
n=−∞

X (jω + jnωs)

The initial-value theorem of the Laplace transform gives

x(0+) = lim
s→∞

[sX (s)] = lim
s→∞

s

1 + s
= 1

and hence X̂ (jω) =
1

2
+

1

T

∞∑
n=−∞

1

1 + j(ω + nωs)
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Example Cont’d
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This slide concludes the presentation.

Thank you for your attention.
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