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Introduction

» In order to process a continuous-time signal using digital
signal processing methodologies, it is first necessary to convert
the continuous-time signal into a discrete-time signal by

applying sampling.

Frame # 2 Slide # 2 A. Antoniou Digital Filters — Secs. 6.3-6.5



Introduction

» In order to process a continuous-time signal using digital
signal processing methodologies, it is first necessary to convert
the continuous-time signal into a discrete-time signal by
applying sampling.

» Sampling obviously entails discarding part of the
continuous-time signal and the question will immediately arise
as to whether the sampling process will corrupt the signal.
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Introduction

» In order to process a continuous-time signal using digital
signal processing methodologies, it is first necessary to convert
the continuous-time signal into a discrete-time signal by
applying sampling.

» Sampling obviously entails discarding part of the
continuous-time signal and the question will immediately arise
as to whether the sampling process will corrupt the signal.

» It turns out that under a certain condition that is part of the
sampling theorem, the information content of the
continuous-time signal can be fully preserved.
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The Sampling Theorem

» The sampling theorem states:
A bandlimited signal x(t) for which

X(w)=0 for |w|> %

where ws = 27/ T, can be uniquely determined from its values
x(nT).
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The Sampling Theorem

» The sampling theorem states:
A bandlimited signal x(t) for which

X(w)=0 for |w|> %
where ws = 27/ T, can be uniquely determined from its values
x(nT).

» Alternatively, in what amounts to the same thing, a
continuous-time signal whose spectrum is zero outside the
baseband (i.e., —ws/2 to ws/2) can, in theory, be recovered
completely from an impulse-modulated version of the signal.
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The Sampling Theorem cont'd

» Consider a two-sided bandlimited signal whose spectrum
satisfies the condition of the sampling theorem.
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The Sampling Theorem cont'd

» Consider a two-sided bandlimited signal whose spectrum
satisfies the condition of the sampling theorem.

» By virtue of Poisson’s summation formula, i.e.,

K(w) == 2 X(io+ j)

n=—oo

impulse modulation will produce sidebands that are well
separated from one another.
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The Sampling Theorem cont'd
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The Sampling Theorem cont'd

» Now if we pass the impulse-modulated signal through an ideal
lowpass filter with a frequency response

Hjw) = T for w < wg/2
)= 0 otherwise

then frequencies in the sidebands will be rejected and we will
be left with the frequencies in the baseband, which constitute
the original continuous-time signal.

Frame # 6 Slide # 10 A. Antoniou Digital Filters — Secs. 6.3-6.5



The Sampling Theorem cont'd

» Now if we pass the impulse-modulated signal through an ideal
lowpass filter with a frequency response

Hjw) = T for w < wg/2
)= 0 otherwise

then frequencies in the sidebands will be rejected and we will
be left with the frequencies in the baseband, which constitute
the original continuous-time signal.

» A baseband gain of T is used to cancel out the scaling
constant 1/ T introduced by Poisson’s summation formula.
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The Sampling Theorem cont'd

» What has been done through a graphical illustration can now
be repeated with mathematics.
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The Sampling Theorem cont'd

» What has been done through a graphical illustration can now
be repeated with mathematics.

» If the impulse-modulated signal is passed through a lowpass
filter with a frequency response H(jw) as defined before, then
the Fourier transform of the output of the filter will be

Y (jw) = H(jw)X (jw)

where
Hjw) = T forw<.w5/2
0 otherwise
and
. 1 S
X(jw) = - n;mX(jw + jnws)
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The Sampling Theorem cont'd

Y (jw) = H(jw)X (jw)

» If we apply the inverse Fourier transform, we get

o0

y(t) = F7H[HGw) 32 x(nT)e =T

n=—oo

oo

Y x(nT)F T [H(jw)e ] (A)

n=—o0
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The Sampling Theorem cont'd

Y (jw) = H(jw)X (jw)

» If we apply the inverse Fourier transform, we get

y(t) = F7H[HGw) 32 x(nT)e =T
S (nT)F [ (w)e "] (A)

n=—o0

» The frequency response of a lowpass filter is actually a
frequency-domain pulse of height T and base ws, i.e.,
H(jw) = Tp.,(w) and hence from the table of Fourier transforms,
we have T sin(wst/2)
sin(wst .
S 4 () (B)
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The Sampling Theorem cont'd

Y= 3 xaT)F A ] (®)
TEtt2) s o) @)

» From the time-shifting theorem of the Fourier transform

T sinjws(t — nT)
w(t—nT)

[A s HjuyedonT (€)
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The Sampling Theorem cont'd

oo

y(£)= Y x(nT)FH[H(jw)e 7] (A)
TSinE::St/2) & H(jw) (B)

» From the time-shifting theorem of the Fourier transform

T sinjws(t — nT)

Ty T ©

» Therefore, from Egs. (A) and (C), we conclude that

yt)= > x(nT)Sirgf(sfi_n’g/)éz]

n=—0o0
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The Sampling Theorem cont'd

oo

y(©)= Y x(nT)F HH(jw)e "] (A)
T sin(wst/2)
mt

“ H(jw) (B)

» From the time-shifting theorem of the Fourier transform

T sinjws(t — nT)
w(t—nT)

[A s HjuyedonT (€)

» Therefore, from Egs. (A) and (C), we conclude that

yt)= > x(nT)Sirgf(sfi_n’g/)éz]

n=—0o0

» Fort =nT, we have y(nT) =x(nT) forn=0,1, ..., kT, and for
all other values of t the output of the lowpass filter is an
interpolated version of x(t) according to the sampling theorem.
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Aliasing

» If the spectrum of the continuous-time signal does not satisfy
the condition imposed by the sampling theorem, i.e., if

X(jw) #0 for |w|> %

then sideband frequencies will be aliased into baseband
frequencies.
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Aliasing
» If the spectrum of the continuous-time signal does not satisfy
the condition imposed by the sampling theorem, i.e., if
. Ws
X(jw) #0 for |w|> >

then sideband frequencies will be aliased into baseband
frequencies.

» As a result, X(jw) will not be equal to X(jw)/ T within the
baseband.
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Aliasing

» If the spectrum of the continuous-time signal does not satisfy
the condition imposed by the sampling theorem, i.e., if

X(jw) #0 for |w|> %
then sideband frequencies will be aliased into baseband

frequencies.

» As a result, X(jw) will not be equal to X(jw)/ T within the
baseband.

» Under these circumstances, the use of an ideal lowpass filter
will yield a distorted version of x(t) at best.
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Aliasing Cont'd

» Aliasing can be illustrated by examining an impulse-modulated
signal generated by sampling the continuous-time signal

x(t) = u(t)e " sinwot

[X(jo)
™~
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Aliasing Cont'd
» Aliasing can be illustrated by examining an impulse-modulated
signal generated by sampling the continuous-time signal
x(t) = u(t)e " sinwot

» The frequency spectrum of x(t), X(jw), extends over the
infinite range —oo < w < 0.

[X(joo)]
0.1f ~ A
0 : :
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Aliasing Cont'd

» The frequency spectrum of impulse-modulated signal X(t) can
be obtained as
1 [o.¢]
X(jw) == > X(jw+jnws)

n—=—oo

by using Poisson’s summation formula.
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Aliasing Cont'd

X(jw) = Z X(jw + jnws)

n=—oo

» The shifted copies of X(jw) or sidebands, namely, ...,
X(jw — j2ws), X(jw — jws), X(jw + jws), X(jw + j2ws), ... overlap
with the baseband —ws/2 < w < ws/2 and, therefore, the above
sum can be expressed as

R(jw) = X () + EGe)]
where

E(jw) = Y X(jw + jkws)

k0

is the contribution of the sidebands to the baseband.
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Aliasing Cont'd

» Now if we filter the impulse-modulated signal, X(t), using an
ideal lowpass filter with a frequency response

T for —ws/2 < w < ws/2

0 otherwise

H(jw) = {
we will get a signal y(t) whose frequency spectrum is given by

Y(jw) = H(jw)X(jw)

oo

= H(jw).% Z X(jw + jnws)

= X(jw) + E(jw)
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Aliasing Cont'd

Y(jw) = X(jw) + E(w)

» In other words, the output of the filter will be signal x(t) plus
an error
e(t) = FE(jw)

which is commonly referred to as the aliasing error.
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Aliasing Cont'd

» With a sampling frequency of 12.5 rad/s, |E(jw)|, i.e., the
discrepancy between the solid and dashed curves in the figure is
quite large.
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Aliasing Cont'd

» As the sampling frequency is increased to 25, the sidebands are
spread out and |E(jw)| will be decreased quite a bit as shown.
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Aliasing Cont'd

all practical

» A further increase to 40 rad/s will render |E(jw)| for
purposes negligible as can be seen.
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» Impulse-modulated signal:

[e.o]

%(t)= Y x(nT)é(t—nT)

n=—0o0

(6.1e)
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Summary of Interrelations

» Impulse-modulated signal:

[e.o]

%(t)= Y x(nT)é(t—nT) (6.1e)

n=—oo

» Spectrum of impulse-modulated signal or discrete-time signal
in terms of the spectrum of the original continuous-time

signal:
X(jw) = Xp(e*T) = Z X (jw + jnws) (6.4a)
where -
Xp(e#T)= Y x(nT)e T
n=—00
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Summary of Interrelations Cont'd

» Spectrum of impulse-modulated signal (or discrete-time
signal) in terms of the spectrum of the original
continuous-time signal for a right-sided signal:

O L 1S Xl ina) (640

n=—oo

X(jw) = Xp(eT) =
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Summary of Interrelations Cont'd

» Spectrum of impulse-modulated signal (or discrete-time
signal) in terms of the spectrum of the original
continuous-time signal for a right-sided signal:

X(jw) = Xp(e“T) = x(0 Z (Jw +jnws) (6.4b)

n=—oo

» Laplace transform of impulse-modulated signal in terms of the
Laplace transform of the original continuous-time signal for a
right-sided signal.

X(s):xp(z):x(g+)+; 3" X(s+jmws)  (6.5a)

n=—0o0

where z = e5T |
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Summary of Interrelations Cont'd
» Recovery of a continuous-time signal by lowpass filtering an
impulse-modulated signal — frequency domain:
Y (jw) = H(jw)X (jw) (6.7)

where

Hjw) = {T for |w| < ws/2

0 for |w| > ws/2
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Summary of Interrelations Cont'd

» Recovery of a continuous-time signal by lowpass filtering an
impulse-modulated signal — frequency domain:
Y (jw) = H(jw)X (jw) (6.7)
where
T for |w| < ws/2
0 for |w| > ws/2

H(jw) = {

» Recovery of a continuous-time signal by lowpass filtering an
impulse-modulated signal — time-domain:

W= 3 oD IOE )
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Graphical Representation of Interrelations

Eq.(6.51)

Replace
numbers by
impulses

x(1)

Eq. (6.42d)
or (6.42¢)

Replace
impulses by
numbers

Eq. (6.48)
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This slide concludes the presentation.
Thank you for your attention.
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