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Introduction

I In order to process a continuous-time signal using digital
signal processing methodologies, it is first necessary to convert
the continuous-time signal into a discrete-time signal by
applying sampling.

I Sampling obviously entails discarding part of the
continuous-time signal and the question will immediately arise
as to whether the sampling process will corrupt the signal.

I It turns out that under a certain condition that is part of the
sampling theorem, the information content of the
continuous-time signal can be fully preserved.

Frame # 2 Slide # 2 A. Antoniou Digital Filters – Secs. 6.3-6.5



Introduction

I In order to process a continuous-time signal using digital
signal processing methodologies, it is first necessary to convert
the continuous-time signal into a discrete-time signal by
applying sampling.

I Sampling obviously entails discarding part of the
continuous-time signal and the question will immediately arise
as to whether the sampling process will corrupt the signal.

I It turns out that under a certain condition that is part of the
sampling theorem, the information content of the
continuous-time signal can be fully preserved.

Frame # 2 Slide # 3 A. Antoniou Digital Filters – Secs. 6.3-6.5



Introduction

I In order to process a continuous-time signal using digital
signal processing methodologies, it is first necessary to convert
the continuous-time signal into a discrete-time signal by
applying sampling.

I Sampling obviously entails discarding part of the
continuous-time signal and the question will immediately arise
as to whether the sampling process will corrupt the signal.

I It turns out that under a certain condition that is part of the
sampling theorem, the information content of the
continuous-time signal can be fully preserved.

Frame # 2 Slide # 4 A. Antoniou Digital Filters – Secs. 6.3-6.5



The Sampling Theorem

I The sampling theorem states:

A bandlimited signal x(t) for which

X (jω) = 0 for |ω| ≥ ωs

2

where ωs = 2π/T , can be uniquely determined from its values
x(nT ).

I Alternatively, in what amounts to the same thing, a
continuous-time signal whose spectrum is zero outside the
baseband (i.e., −ωs/2 to ωs/2) can, in theory, be recovered
completely from an impulse-modulated version of the signal.
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The Sampling Theorem Cont’d

I Consider a two-sided bandlimited signal whose spectrum
satisfies the condition of the sampling theorem.

I By virtue of Poisson’s summation formula, i.e.,

X̂ (jω) =
1

T

∞∑
n=−∞

X (jω + jnωs)

impulse modulation will produce sidebands that are well
separated from one another.
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The Sampling Theorem Cont’d
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The Sampling Theorem Cont’d

I Now if we pass the impulse-modulated signal through an ideal
lowpass filter with a frequency response

H(jω) =

{
T for ω < ωs/2

0 otherwise

then frequencies in the sidebands will be rejected and we will
be left with the frequencies in the baseband, which constitute
the original continuous-time signal.

I A baseband gain of T is used to cancel out the scaling
constant 1/T introduced by Poisson’s summation formula.
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The Sampling Theorem Cont’d
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The Sampling Theorem Cont’d

I What has been done through a graphical illustration can now
be repeated with mathematics.

I If the impulse-modulated signal is passed through a lowpass
filter with a frequency response H(jω) as defined before, then
the Fourier transform of the output of the filter will be

Y (jω) = H(jω)X̂ (jω)

where

H(jω) =

{
T for ω < ωs/2

0 otherwise

and

X̂ (jω) =
1

T

∞∑
n=−∞

X (jω + jnωs)
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The Sampling Theorem Cont’d

· · ·
Y (jω) = H(jω)X̂ (jω)

I If we apply the inverse Fourier transform, we get

y(t) = F−1
[
H(jω)

∞∑
n=−∞

x(nT )e−jωnT

]

=
∞∑

n=−∞
x(nT )F−1[H(jω)e−jωnT ] (A)

I The frequency response of a lowpass filter is actually a
frequency-domain pulse of height T and base ωs , i.e.,
H(jω) = Tpωs (ω) and hence from the table of Fourier transforms,
we have

T sin(ωst/2)

πt
↔ H(jω) (B)
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The Sampling Theorem Cont’d

· · ·
y(t) =

∞∑
n=−∞

x(nT )F−1[H(jω)e−jωnT ] (A)

T sin(ωst/2)

πt
↔ H(jω) (B)

I From the time-shifting theorem of the Fourier transform

T sin[ωs(t − nT )/2]

π(t − nT )
↔ H(jω)e−jωnT (C)

I Therefore, from Eqs. (A) and (C), we conclude that

y(t) =
∞∑

n=−∞
x(nT )

sin[ωs(t − nT )/2]

ωs(t − nT )/2

I For t = nT , we have y(nT ) = x(nT ) for n = 0, 1, . . . , kT , and for
all other values of t the output of the lowpass filter is an
interpolated version of x(t) according to the sampling theorem.
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Aliasing

I If the spectrum of the continuous-time signal does not satisfy
the condition imposed by the sampling theorem, i.e., if

X (jω) 6= 0 for |ω| ≥ ωs

2

then sideband frequencies will be aliased into baseband
frequencies.

I As a result, X̂ (jω) will not be equal to X (jω)/T within the
baseband.

I Under these circumstances, the use of an ideal lowpass filter
will yield a distorted version of x(t) at best.

Frame # 11 Slide # 20 A. Antoniou Digital Filters – Secs. 6.3-6.5



Aliasing

I If the spectrum of the continuous-time signal does not satisfy
the condition imposed by the sampling theorem, i.e., if

X (jω) 6= 0 for |ω| ≥ ωs

2

then sideband frequencies will be aliased into baseband
frequencies.

I As a result, X̂ (jω) will not be equal to X (jω)/T within the
baseband.

I Under these circumstances, the use of an ideal lowpass filter
will yield a distorted version of x(t) at best.

Frame # 11 Slide # 21 A. Antoniou Digital Filters – Secs. 6.3-6.5



Aliasing

I If the spectrum of the continuous-time signal does not satisfy
the condition imposed by the sampling theorem, i.e., if

X (jω) 6= 0 for |ω| ≥ ωs

2

then sideband frequencies will be aliased into baseband
frequencies.

I As a result, X̂ (jω) will not be equal to X (jω)/T within the
baseband.

I Under these circumstances, the use of an ideal lowpass filter
will yield a distorted version of x(t) at best.

Frame # 11 Slide # 22 A. Antoniou Digital Filters – Secs. 6.3-6.5



Aliasing Cont’d

I Aliasing can be illustrated by examining an impulse-modulated
signal generated by sampling the continuous-time signal

x(t) = u(t)e−at sinω0t

I The frequency spectrum of x(t), X (jω), extends over the
infinite range −∞ < ω <∞.
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Aliasing Cont’d

I The frequency spectrum of impulse-modulated signal x̂(t) can
be obtained as

X̂ (jω) =
1

T

∞∑
n=−∞

X (jω + jnωs)

by using Poisson’s summation formula.
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Aliasing Cont’d

· · ·
X̂ (jω) =

1

T

∞∑
n=−∞

X (jω + jnωs)

I The shifted copies of X (jω) or sidebands, namely, . . .,
X (jω − j2ωs), X (jω − jωs), X (jω + jωs), X (jω + j2ωs), . . . overlap
with the baseband −ωs/2 < ω < ωs/2 and, therefore, the above
sum can be expressed as

X̂ (jω) =
1

T
[X (jω) + E (jω)]

where

E (jω) =
∞∑

k=−∞
k 6=0

X (jω + jkωs)

is the contribution of the sidebands to the baseband.
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Aliasing Cont’d

I Now if we filter the impulse-modulated signal, x̂(t), using an
ideal lowpass filter with a frequency response

H(jω) =

{
T for −ωs/2 < ω < ωs/2

0 otherwise

we will get a signal y(t) whose frequency spectrum is given by

Y (jω) = H(jω)X̂ (jω)

= H(jω) · 1

T

∞∑
n=−∞

X (jω + jnωs)

= X (jω) + E (jω)
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Aliasing Cont’d

· · ·
Y (jω) = X (jω) + E (jω)

I In other words, the output of the filter will be signal x(t) plus
an error

e(t) = F−1E (jω)

which is commonly referred to as the aliasing error.

Frame # 16 Slide # 28 A. Antoniou Digital Filters – Secs. 6.3-6.5



Aliasing Cont’d

I With a sampling frequency of 12.5 rad/s, |E (jω)|, i.e., the
discrepancy between the solid and dashed curves in the figure is
quite large.
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Aliasing Cont’d

I As the sampling frequency is increased to 25, the sidebands are
spread out and |E (jω)| will be decreased quite a bit as shown.
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Aliasing Cont’d

I A further increase to 40 rad/s will render |E (jω)| for all practical
purposes negligible as can be seen.
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Summary of Interrelations

I Impulse-modulated signal:

x̂(t) =
∞∑

n=−∞
x(nT )δ(t − nT ) (6.1e)

I Spectrum of impulse-modulated signal or discrete-time signal
in terms of the spectrum of the original continuous-time
signal:

X̂ (jω) = XD(e jωT ) =
1

T

∞∑
n=−∞

X (jω + jnωs) (6.4a)

where

XD(e jωT ) =
∞∑

n=−∞
x(nT )e−jωnT

Frame # 20 Slide # 32 A. Antoniou Digital Filters – Secs. 6.3-6.5



Summary of Interrelations

I Impulse-modulated signal:

x̂(t) =
∞∑

n=−∞
x(nT )δ(t − nT ) (6.1e)

I Spectrum of impulse-modulated signal or discrete-time signal
in terms of the spectrum of the original continuous-time
signal:

X̂ (jω) = XD(e jωT ) =
1

T

∞∑
n=−∞

X (jω + jnωs) (6.4a)

where

XD(e jωT ) =
∞∑

n=−∞
x(nT )e−jωnT

Frame # 20 Slide # 33 A. Antoniou Digital Filters – Secs. 6.3-6.5



Summary of Interrelations Cont’d

I Spectrum of impulse-modulated signal (or discrete-time
signal) in terms of the spectrum of the original
continuous-time signal for a right-sided signal:

X̂ (jω) = XD(e jωT ) =
x(0+)

2
+

1

T

∞∑
n=−∞

X (jω+ jnωs) (6.4b)

I Laplace transform of impulse-modulated signal in terms of the
Laplace transform of the original continuous-time signal for a
right-sided signal:

X̂ (s) = XD(z) =
x(0+)

2
+

1

T

∞∑
n=−∞

X (s + jnωs) (6.5a)

where z = esT .
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Summary of Interrelations Cont’d

I Recovery of a continuous-time signal by lowpass filtering an
impulse-modulated signal – frequency domain:

Y (jω) = H(jω)X̂ (jω) (6.7)

where

H(jω) =

{
T for |ω| < ωs/2

0 for |ω| ≥ ωs/2

I Recovery of a continuous-time signal by lowpass filtering an
impulse-modulated signal – time-domain:

y(t) =
∞∑

n=−∞
x(nT )

sin[ωs(t − nT )/2]

ωs(t − nT )/2
(6.10)
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Graphical Representation of Interrelations

X(s)

x(t) X( jω)

x(nT ) XD(z)

x(t)

L

F

jω → s

s → jω

F

Z

Eq. (6.51)
Eq. (6.42d)

or (6.42e)

Replace

impulses by

numbers

Replace

numbers by

impulses

Eq. (6.48)
Eq. (6.45a)

or (6.45b)

z → e jωT

Z −1

L −1

F −1

F −1

jω →      ln z
1

T

X( jω)ˆˆ
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This slide concludes the presentation.

Thank you for your attention.
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