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Introduction

� By virtue of the sampling theorem, given a bandlimited
continuous-time signal, a corresponding impulse-
modulated signal can be constructed without compromising
the information content of the signal.

� By processing the impulse-modulated signal obtained using a
so-called impulse-modulated filter, a processed
impulse-modulated signal can be generated.

� And by converting the processed impulse-modulated signal
back to a continuous-time signal, a processed version of the
continuous-time signal can be obtained.

� Thus impulse-modulated filters can be used to process
continuous-time signals.
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Introduction Cont’d

� Impulse-modulated filters are essentially analog filters.

� However, they have a dual personality in that they can be
characterized in terms of a continuous-time or a discrete-time
transfer function.

� Consequently, they can be implemented in terms of digital
filters.

� Therefore, digital filters can be used to process
continuous-time signals.

Frame # 3 Slide # 6 A. Antoniou Digital Filters – Secs. 6.6, 6.7



Introduction Cont’d

� Impulse-modulated filters are essentially analog filters.

� However, they have a dual personality in that they can be
characterized in terms of a continuous-time or a discrete-time
transfer function.

� Consequently, they can be implemented in terms of digital
filters.

� Therefore, digital filters can be used to process
continuous-time signals.

Frame # 3 Slide # 7 A. Antoniou Digital Filters – Secs. 6.6, 6.7



Introduction Cont’d

� Impulse-modulated filters are essentially analog filters.

� However, they have a dual personality in that they can be
characterized in terms of a continuous-time or a discrete-time
transfer function.

� Consequently, they can be implemented in terms of digital
filters.

� Therefore, digital filters can be used to process
continuous-time signals.

Frame # 3 Slide # 8 A. Antoniou Digital Filters – Secs. 6.6, 6.7



Introduction Cont’d

� Impulse-modulated filters are essentially analog filters.

� However, they have a dual personality in that they can be
characterized in terms of a continuous-time or a discrete-time
transfer function.

� Consequently, they can be implemented in terms of digital
filters.

� Therefore, digital filters can be used to process
continuous-time signals.

Frame # 3 Slide # 9 A. Antoniou Digital Filters – Secs. 6.6, 6.7



Introduction Cont’d

� In this presentation a discrete-time system that can be used to
process continuous-time signals is developed.

� The system is initially constructed using idealized A/D and
D/A interfacing devices.

� Replacing the idealized A/D and D/A interfacing devices by
practical ones tends to introduce certain imperfections.

These imperfections are examined and methods for minimizing
their effects are discussed.
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Impulse-Modulated Filter

� A discrete-time system that can be used to process
continuous-time signals can be deduced by considering the
filtering system shown:

x(t)

S1

c(t)

S2

FA

c(t)

FLP y(t)

(a)

x(t)ˆ y(t)ˆ

FA
ˆ
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Impulse-Modulated Filter Cont’d

x(t)

S1

c(t)

S2

FA

c(t)

FLP y(t)

(a)

x(t)ˆ y(t)ˆ

FA
ˆ

� FA is an analog filter with a transfer function HA(s) and an impulse
response

hA(t) = L−1HA(s)

� FLP is a lowpass filter with a frequency response

HLP(jω) =

{
T 2 for |ω| < ωs/2

0 otherwise

� Analog filter FA along with impulse modulator S2 constitute a
so-called impulse-modulated filter designated as F̂A.
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Impulse-Modulated Filter Cont’d

x(t)

S1

c(t)

S2

FA

c(t)

FLP y(t)

(a)

x(t)ˆ y(t)ˆ

FA
ˆ

� FA is an analog filter with a transfer function HA(s) and an impulse
response

hA(t) = L−1HA(s)

� FLP is a lowpass filter with a frequency response

HLP(jω) =

{
T 2 for |ω| < ωs/2

0 otherwise

� Analog filter FA along with impulse modulator S2 constitute a
so-called impulse-modulated filter designated as F̂A.

Frame # 6 Slide # 15 A. Antoniou Digital Filters – Secs. 6.6, 6.7



Impulse-Modulated Filter Cont’d
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Impulse-Modulated Filter Cont’d

x(t)

S1

c(t)

S2

FA

c(t)

FLP y(t)

(a)

x(t)ˆ y(t)ˆ

FA
ˆ

� Due to the presence of impulse modulator S2, the impulse
response of filter F̂A will be an impulse modulated signal of
the form

ĥA(t) =
∞∑
n=0

hA(nT )δ(t − nT )

Frame # 7 Slide # 17 A. Antoniou Digital Filters – Secs. 6.6, 6.7



Impulse-Modulated Filter Cont’d

· · ·
ĥA(t) =

∞∑
n=0

hA(nT )δ(t − nT )

� Applying Poisson’s summation formula and then replacing jω
by s and esT by z , we get

ĤA(s) = HD(z) =
hA(0+)

2
+

1

T

∞∑
n=−∞

HA(s + jnωs)

where

hA(t) = L−1HA(s), hA(0+) = lim
s→∞

[sHA(s)]

HD(z) = ZhA(nT ), z = esT
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Impulse-Modulated Filter Cont’d

· · ·

ĤA(s) = HD(z) =
hA(0+)

2
+

1

T

∞∑
n=−∞

HA(s + jnωs)

x(t)

S1

c(t)

S2

FA

c(t)

FLP y(t)

(a)

x(t)ˆ y(t)ˆ

FA
ˆ

� Therefore, the impulse-modulated filter F̂A can be represented
by a continuous-time transfer function ĤA(s) and a
discrete-time transfer function HD(z).
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Impulse-Modulated Filter Cont’d

The dual personality of an impulse-modulated filter allows us to do
two things, as follows:

� To process continuous-time signals using digital filters.

� To design digital filters starting with analog filters.

� The processing of continuous-time signals using digital filters
will be considered next.

� The design of digital filters on the basis of analog filters is
considered in Chap. 12.
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Processing of Continuous-Time Signals

x(t)

S1

c(t)

S2

FA

c(t)

FLP y(t)

(a)

x(t)ˆ y(t)ˆ

FA
ˆ

� The transfer function of the cascade arrangement of the
impulse-modulated filter and the lowpass filter is the product
of their individual transfer functions, i.e., ĤA(s)HLP(s).

� Hence the Laplace transform of y(t) can be obtained as

Y (s) = ĤA(s)HLP(s)X̂ (s)
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Processing of Continuous-Time Signals Cont’d

· · ·
Y (s) = ĤA(s)HLP(s)X̂ (s)

� Therefore, the frequency spectrum of the output signal is obtained
as

Y (jω) = ĤA(jω)HLP(jω)X̂ (jω)

where

ĤA(jω) =
hA(0+)

2
+

1

T

∞∑
n=−∞

HA(jω + jnωs)

HLP(jω) =

{
T 2 for |ω| < ωs/2

0 otherwise

X̂ (jω) =
x(0+)

2
+

1

T

∞∑
n=−∞

X (jω + jnωs)
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Processing of Continuous-Time Signals Cont’d

� If we now assume that the input signal, x(t), and the impulse
response of the analog filter, hA(t), are bandlimited such that

x(0+) = 0 and X (jω) = HA(jω) = 0 for |ω| ≥ ωs/2

then no aliasing can occur in X̂ (jω) or ĤA(jω) and thus

X̂ (jω) =
1

T
X (jω) and ĤA(jω) =

1

T
HA(jω) for |ω| < ωs

2

� Substituting these results in

Y (jω) = ĤA(jω)HLP(jω)X̂ (jω)

we get Y (jω) = HA(jω)X (jω)

and by letting jω = s, we have

Y (s) = HA(s)X (s)

(See textbook for details.)
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Processing of Continuous-Time Signals Cont’d

· · ·
Y (s) = HA(s)X (s)

x(t)

S1

c(t)

S2

FA

c(t)

FLP y(t)

(a)

x(t)ˆ y(t)ˆ

FA
ˆ

� This is rather interesting: Under the stated assumptions, the
filtering scheme shown behaves exactly like analog filter FA
except that it uses several additional components, i.e., two
impulse modulators and a lowpass analog filter.
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Processing of Continuous-Time Signals Cont’d

x(t)

S1

c(t)

S2

FA

c(t)

FLP y(t)

(a)

x(t)ˆ y(t)ˆ

FA
ˆ

� However, something important has been achieved: Since an
impulse-modulated filter can be represented by a discrete-time
transfer function, it can be implemented in the form of a
digital filter.

� By replacing the impulse-modulated filter by a digital filter, a
filtering scheme can be obtained that can be used to process
continuous-time signals, which is quite nice.
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Processing of Continuous-Time Signals Cont’d
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Processing of Continuous-Time Signals Cont’d

x(t)

S1

c(t)

S2

FA

c(t)

FLP y(t)

(a)

x(t)ˆ y(t)ˆ

FA
ˆ

� Since the signals in impulse-modulated filters are analog
signals and those in digital filters are digital signals in binary
form, suitable interfacing devices have to be used.

� At the output of impulse modulator S1, we need to add an
A/D converter and at the output of the digital filter we need
to add a D/A converter.

� We must also add a lowpass filter at the input to ensure that
the input signal is bandlimited in order to prevent aliasing.
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Processing of Continuous-Time Signals Cont’d

x(t) 

S1 

c(t) 

S2 

FA 

c(t) 

FLP y(t) 

(a) 

(b) 

x(t) x(nT ) y (nT ) y(t) 

c(t) 

FLP A/D DF D/A FLP 

1 2 3 4 5 6 7 

x(t) ˆ y(t) ˆ 

FA 

y(t) ˆ x(t) ˆ 

ˆ 
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Example

The DSP system shown is used to process the periodic signal given
by

x(t) =

{
sinω0t for 0 ≤ t ≤ T0/2

0 for −T0/2 ≤ t ≤ 0

where ω0 = 2π/T0.

(b)

x(t) x(nT ) y (nT ) y(t)

c(t)

FLP A/D DF D/A FLP

1 2 3 4 5 6 7

y(t)ˆx(t)ˆ
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Example Cont’d

The lowpass filters are characterized by

HLP(jω) =

{
1 for 0 ≤ |ω| < 6ω0

0 otherwise

The digital filter is a bandpass filter with a baseband frequency response

HD(e jωT ) =

{
T for 0.95ω0 < |ω| < 1.05ω0

0 otherwise

Assuming that ωs = 12ω0, find the time- and frequency-domain
representations of the signals at nodes 1, 2, . . . , 7.

Solution The time- and frequency-domain representations of the signals
are illustrated in the next slide. See textbook for the formulas.
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Example Cont’d

(b) 

A3,4(ω) 

DF 

FLP 

A7(ω) 

6ω0 12ω0 18ω0 

A5,6(ω) 

1 

T 

FLP 
1 

A1(ω) 

6ω0 12ω0 18ω0 
ω

A2(ω) 

(a) 

x1(t) 

x2(t) 

x4(nT ) 

x5(nT ) 

x7(t) 

t 

t 

t 

nT 

nT 

t 

t 

x3(t) ˆ 

x6(t) ˆ 

ω
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Practical Considerations – Input Interface

(b)

x(t) x(nT ) y (nT ) y(t)

c(t)

FLP A/D DF D/A FLP

1 2 3 4 5 6 7

y(t)ˆx(t)ˆ

� The input interface consists of an impulse modulator followed by a
special type of A/D converter that will sense the strengths of a
series of impulses and produce a series of binary numbers.

� Since the strengths of the impulses are equal to the amplitude
values of the input signal at the sampling instants, a much more
practical input interface can be constructed by using a
sample-and-hold circuit followed by an encoder.
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Input Interface Cont’d

· · ·

(b)

x(t) x(nT ) y (nT ) y(t)

c(t)

FLP A/D DF D/A FLP

1 2 3 4 5 6 7

y(t)ˆx(t)ˆ

� Recall that a signal must be quantized before it can be
converted into a binary signal.

� Therefore, quantization error is introduced.
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Input Interface Cont’d

Sample

and hold

device

Practical A/D converter

Encoder

x(kT)

xq(nT)

xq(nT)

kT

t

nT

x(t)˜

x(t)˜

0 0 2T−T−T 4T 6T 8T 10T10T

x(t)

x(t)

(a)

(b) (c)
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Input Interface – Model

Ideal 

A/D
x(t) xq(nT)

−e(nT)

(d)

x(nT)

Sample

and hold

device

Practical A/D converter

Encoder xq(nT)
x(t)˜

x(t)

(a)
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Practical Considerations – Output Interface

(b)

x(t) x(nT ) y (nT ) y(t)

c(t)

FLP A/D DF D/A FLP

1 2 3 4 5 6 7

y(t)ˆx(t)ˆ

� The DSP system will operate correctly only if the output of the
D/A converter is an impulse-modulated signal which is a sequence
of analog impulses.

� Recall that analog impulses are supposed to be very thin and very
tall pulses.

� However, practical D/A converters will produce pulses that are
neither particularly tall nor particularly thin, and this causes a
somewhat serious problem.
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Practical Considerations – Output Interface
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� Recall that analog impulses are supposed to be very thin and very
tall pulses.

� However, practical D/A converters will produce pulses that are
neither particularly tall nor particularly thin, and this causes a
somewhat serious problem.
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Output Interface Cont’d

(a)

nT

τ t

y(nT )

y(t)˜

(b)

nT

T

y(nT )

y(t)ˆ

t

� The output of the D/A converter is in theory an
impulse-modulated signal as shown in figure (a) but in
practice it assumes the form shown in figure (b).

� Such a waveform can be represented by the equation

ỹ(t) =
∞∑

n=−∞
y(nT )pτ (t − nT )
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Output Interface Cont’d

(a)

nT

τ t

y(nT )

y(t)˜
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nT
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y(nT )

y(t)ˆ

t

� The output of the D/A converter is in theory an
impulse-modulated signal as shown in figure (a) but in
practice it assumes the form shown in figure (b).

� Such a waveform can be represented by the equation

ỹ(t) =
∞∑

n=−∞
y(nT )pτ (t − nT )
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Output Interface Cont’d

· · ·
ỹ(t) =

∞∑
n=−∞

y(nT )pτ (t − nT )

� From the table of Fourier transforms,

Fpτ (t) =
2 sin(ωτ/2)

ω

� By using the time-shifting theorem, we obtain

Fpτ (t − nT ) =
2 sin(ωτ/2)

ω
e−jωnT

� Hence the Fourier transform of ỹ(t) can be obtained as

Ỹ (jω) =
∞∑

n=−∞
y(nT )Fpτ (t − nT ) =

2 sin(ωτ/2)

ω

∞∑
n=−∞

y(nT )e−jωnT

Frame # 27 Slide # 50 A. Antoniou Digital Filters – Secs. 6.6, 6.7



Output Interface Cont’d

· · ·
ỹ(t) =
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� Hence the Fourier transform of ỹ(t) can be obtained as
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Output Interface Cont’d

· · ·
ỹ(t) =

∞∑
n=−∞

y(nT )pτ (t − nT )

� From the table of Fourier transforms,

Fpτ (t) =
2 sin(ωτ/2)

ω

� By using the time-shifting theorem, we obtain

Fpτ (t − nT ) =
2 sin(ωτ/2)

ω
e−jωnT

� Hence the Fourier transform of ỹ(t) can be obtained as

Ỹ (jω) =
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Output Interface Cont’d

· · ·

Ỹ (jω) =
2 sin(ωτ/2)

ω

∞∑
n=−∞

y(nT )e−jωnT

� Alternatively,
Ỹ (jω) = Hp(jω)Ŷ (jω)

where

Hp(jω) =
τ sin(ωτ/2)

ωτ/2
and Ŷ (jω) =

∞∑
n=−∞

y(nT )e−jωnT
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Output Interface Cont’d

� Since

Ŷ (jω) =
∞∑

n=−∞
y(nT )e−jωnT = F

∞∑
n=−∞

y(nT )δ(t−nT ) = F ŷ(t)

it follows that Ŷ (jω) is the frequency spectrum of the
impulse-modulated signal that should appear at the output of
an ideal D/A converter.
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Output Interface Cont’d

(a)

nT

τ t

y(nT )

y(t)˜

(b)

nT

T

y(nT )

y(t)ˆ

t

� Therefore, we conclude that the frequency spectrum of the
output of a practical D/A converter (the signal shown in
figure (b) can be regarded as a corrupted version of the
spectrum of the output of an ideal D/A converter (the signal
shown in figure (a), and it is given by

Ỹ (jω) = Hp(jω)Ŷ (jω) where Hp(jω) =
τ sin(ωτ/2)

ωτ/2
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Output Interface Cont’d

� In effect, a practical D/A converter can be modelled in terms
of an ideal D/A converter followed by a parasitic filter Fp, as
shown in figure (c):

(d)

Ideal D/A
converter

y(t)˜y(nT)
ŷ(t)

(c)

Practical D/A converter

Fp

|Hp( jω)|

τ

τ
2π

τ
4π

ω
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Output Interface Cont’d

� The amplitude response of the parasitic filter is given by

|Hp(jω)| =

∣∣∣∣τ sin(ωτ/2)

ωτ/2

∣∣∣∣
and is illustrated in figure (d).

� It tends to distort the amplitude response of the digital filter
by introducing amplitude distortion, often referred to as sinc
distortion.

(d )

Ideal D/A
converter

y(t)˜y(nT)
ŷ(t)

(c)

Practical D/A converter

Fp

|Hp( jω)|

τ

τ
2π

τ
4π

ω
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Output Interface Cont’d

� The amplitude response of the parasitic filter is given by

|Hp(jω)| =

∣∣∣∣τ sin(ωτ/2)

ωτ/2

∣∣∣∣
and is illustrated in figure (d).

� It tends to distort the amplitude response of the digital filter
by introducing amplitude distortion, often referred to as sinc
distortion.

(d )

Ideal D/A
converter

y(t)˜y(nT)
ŷ(t)

(c)

Practical D/A converter

Fp

|Hp( jω)|

τ

τ
2π

τ
4π

ω
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Output Interface Cont’d

� The effect of sinc distortion on the response of a bandpass digital
filter is illustrated below.

Gain

Gain

|Hp( jω)|

2π
τ

ω

ω

ω

(a)

(b)

(c)
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Output Interface Cont’d

� Sinc distortion can be reduced by reducing the width of the
pulses τ .

(d )

|Hp( jω)|

τ

τ
2π

τ
4π

ω

nT

τ t

y(nT )

y(t)˜

(b)
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Output Interface Cont’d

� Another way to reduce sinc distortion is to design the digital filter
with predistorted amplitude response as shown so as to compensate
for the sinc distortion.

Gain

Gain

|Hp( jω)|

2π
τ

ω

ω

ω

(a)

(b)

(c)
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Output Interface Cont’d

� See Example 6.4 for detailed calculations on the effects of sinc
distortion in the case where the digital filter is a bandpass
filter.
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This slide concludes the presentation.

Thank you for your attention.
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