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Introduction

t Previous presentations considered the basics of signal analysis
and the characterization and analysis of discrete-time systems
in general.

t The remaining presentations deal with the design of
discrete-time systems that can be used to reshape the spectral
characteristics of discrete-time signals, namely, digital filters.t The design of digital filters encompasses all the activities that
need to be undertaken from the point where a need for a
specific type of digital filter is identified to the point where a
prototype is constructed, tested, and approved.
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Introduction Cont’d

t In general the design of digital filters involves the following
steps:

– Approximation

– Realization

– Study of arithmetic errors

– Implementation
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Approximation Step

t The approximation step is the process of generating a transfer
function that would satisfy the desired specifications which may
concern the amplitude or phase response or even the time-domain
response of the filter.

t The available methods for the solution of the approximation
problem can be classified as direct or indirect.t In direct methods, the problem is solved directly in the z domain.t In indirect methods, a continuous-time transfer function is first
obtained and then converted into a corresponding discrete-time
transfer function.t Nonrecursive filters are always designed through direct methods
whereas recursive filters can be designed either through direct or
indirect methods.
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Approximation Step Cont’d

t Approximation methods can also be classified as closed-form
or iterative.

t In closed-form methods, the problem is solved through a small
number of design steps using a set of closed-form formulas.t In iterative methods, an initial solution is assumed and
through the application of optimization methods a series of
progressively improved solutions are obtained until some
design criterion is satisfied.
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Approximation Step Cont’d

t In general, the designer is interested in approximation
methods that

– are simple,

– are reliable,

– yield precise designs,

– require minimal computation effort, and so on.
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Realization Step

t The realization or synthesis of a digital filter is the process of
generating a digital-filter network or structure from the
transfer function or some other characterization of the
filter.

t The network obtained is said to be the realization of the
transfer function.t As for approximation methods, realization methods can be
classified as direct or indirect.t In direct methods the filter structure is obtained directly from
a given discrete-time transfer function whereas in indirect
realizations it is obtained indirectly from an equivalent
continuous-time transfer function.
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Realization Step Cont’d

t Many realization methods have been proposed in the past
that lead to digital-filter structures of varying complexity and
properties.

t The designer is usually interested in realizations that

– are easy to implement in very-large-scale integrated (VLSI)
circuit form,

– require the minimum number of unit delays, adders, and
multipliers,

– are not seriously affected by the use of finite-precision
arithmetic in the implementation, and so on.
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Study of Arithmetic Errors

t Designs of all types from that of a refrigerator to an electrical
drill entail imperfections of various sorts brought about by
modeling inaccuracies, component tolerances, unusual or
unexpected nonlinear effects, and so on.

t A design will be approved to the extent that design
imperfections do not violate the desired specifications.t In digital filters and digital systems in general, most
imperfections are caused by numerical imprecision of some
form and studying the ways in which numerical imprecision
will manifest itself needs to be undertaken.

Frame # 9 Slide # 32 A. Antoniou Digital Filters – Secs. 9.1, 9.2.1, 9.2.2



Study of Arithmetic Errors

t Designs of all types from that of a refrigerator to an electrical
drill entail imperfections of various sorts brought about by
modeling inaccuracies, component tolerances, unusual or
unexpected nonlinear effects, and so on.t A design will be approved to the extent that design
imperfections do not violate the desired specifications.

t In digital filters and digital systems in general, most
imperfections are caused by numerical imprecision of some
form and studying the ways in which numerical imprecision
will manifest itself needs to be undertaken.

Frame # 9 Slide # 33 A. Antoniou Digital Filters – Secs. 9.1, 9.2.1, 9.2.2



Study of Arithmetic Errors

t Designs of all types from that of a refrigerator to an electrical
drill entail imperfections of various sorts brought about by
modeling inaccuracies, component tolerances, unusual or
unexpected nonlinear effects, and so on.t A design will be approved to the extent that design
imperfections do not violate the desired specifications.t In digital filters and digital systems in general, most
imperfections are caused by numerical imprecision of some
form and studying the ways in which numerical imprecision
will manifest itself needs to be undertaken.

Frame # 9 Slide # 34 A. Antoniou Digital Filters – Secs. 9.1, 9.2.1, 9.2.2



Study of Arithmetic Errors Cont’d

t During the approximation step, the coefficients of the transfer
function are determined to a high degree of precision.

t In practice, however, digital hardware has finite precision that
depends

– on the length of registers used to store numbers

– the type of number system used (e.g., signed-magnitude, two’s
complement)

– the type of arithmetic used (e.g., fixed-point or floating-point),
etc.
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Study of Arithmetic Errors Cont’d

t In order to accommodate filter coefficients in registers, they
must be quantized (e.g., rounded or truncated).

t When the transfer function coefficients are quantized, errors
are introduced in the amplitude and phase responses of the
filter, which are commonly referred to as quantization errors.
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Study of Arithmetic Errors Cont’d

t Quantization errors can cause the digital filter to violate the
required specifications and in extreme cases even to become
unstable.

t Like the filter coefficients, the signals to be processed as well
as the internal signals of a digital filter (e.g., the products
generated by multipliers) must also be quantized.t Errors introduced by the quantization of signals can be
treated as noise sources and, as a consequence, they can have
a dramatic effect on the processed signal.t In short, the effects of arithmetic errors on the performance of
the filter must be investigated and ways must be found to
mitigate any problems associated with numerical imprecision.

Frame # 12 Slide # 42 A. Antoniou Digital Filters – Secs. 9.1, 9.2.1, 9.2.2



Study of Arithmetic Errors Cont’d

t Quantization errors can cause the digital filter to violate the
required specifications and in extreme cases even to become
unstable.t Like the filter coefficients, the signals to be processed as well
as the internal signals of a digital filter (e.g., the products
generated by multipliers) must also be quantized.

t Errors introduced by the quantization of signals can be
treated as noise sources and, as a consequence, they can have
a dramatic effect on the processed signal.t In short, the effects of arithmetic errors on the performance of
the filter must be investigated and ways must be found to
mitigate any problems associated with numerical imprecision.

Frame # 12 Slide # 43 A. Antoniou Digital Filters – Secs. 9.1, 9.2.1, 9.2.2



Study of Arithmetic Errors Cont’d

t Quantization errors can cause the digital filter to violate the
required specifications and in extreme cases even to become
unstable.t Like the filter coefficients, the signals to be processed as well
as the internal signals of a digital filter (e.g., the products
generated by multipliers) must also be quantized.t Errors introduced by the quantization of signals can be
treated as noise sources and, as a consequence, they can have
a dramatic effect on the processed signal.

t In short, the effects of arithmetic errors on the performance of
the filter must be investigated and ways must be found to
mitigate any problems associated with numerical imprecision.

Frame # 12 Slide # 44 A. Antoniou Digital Filters – Secs. 9.1, 9.2.1, 9.2.2



Study of Arithmetic Errors Cont’d

t Quantization errors can cause the digital filter to violate the
required specifications and in extreme cases even to become
unstable.t Like the filter coefficients, the signals to be processed as well
as the internal signals of a digital filter (e.g., the products
generated by multipliers) must also be quantized.t Errors introduced by the quantization of signals can be
treated as noise sources and, as a consequence, they can have
a dramatic effect on the processed signal.t In short, the effects of arithmetic errors on the performance of
the filter must be investigated and ways must be found to
mitigate any problems associated with numerical imprecision.

Frame # 12 Slide # 45 A. Antoniou Digital Filters – Secs. 9.1, 9.2.1, 9.2.2



Implementation

t The implementation of a digital filter can assume two forms,
namely, software or hardware.

t A software implementation involves the simulation of the filter
network or difference equation on a general-purpose digital
computer, workstation, or DSP chip.t A hardware implementation involves the conversion of the
filter network into a dedicated piece of hardware.
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Implementation Cont’d

t The choice of implementation is usually critically dependent
on the application at hand.

t In nonreal-time applications where a record of the data to be
processed is available in a database, a software
implementation would be entirely satisfactory.t In real-time applications, however, where data must be
processed at a very high rate, e.g., in communication systems,
a hardware implementation is mandatory.t Often the best engineering solution might be partially in terms
of software and partially in terms of hardware since software
and hardware are highly exchangeable nowadays.
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Implementation Cont’d

t The natural order of the four basic design steps is as stated in
the preceding discussion, namely, approximation, realization,
study of imperfections, and implementation.

t However, realization is the easiest to learn and for this reason
it will be treated first.t The approximation step, study of errors, and other design
considerations will be discussed in later presentations.t See end of Chap. 9 for a discussion on the implementation of
digital filters.
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Realization

t A great collection of direct and indirect realization methods
have evolved over the past 40 years.

t In direct methods, the transfer function is put in some form
that enables the identification of an interconnection of
elemental digital-filter subnetworks.t Some of these methods are as follows:

– Direct

– Direct canonic

– State-space

– Lattice

– Parallel

– Cascade
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Direct Realization

t An arbitrary causal nonrecursive filter can be represented by the
equation

Y (z) = N(z)X (z) =

[
N∑
i=0

aiz
−i

]
X (z)

t We can write

Y (z) =

[
a0 + z−1

N∑
i=1

aiz
−i+1

]
X (z)

or Y (z) = [a0 + z−1N1(z)]X (z)

where N1(z) =
N∑
i=1

aiz
−i+1
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Direct Realization Cont’d

· · ·
Y (z) = N(z)X (z) = [a0 + z−1N1(z)]X (z)

t Therefore, transfer function N(z) can be realized by using

– a multiplier with a constant a0

– a unit delay, and

– a network with a transfer function N1(z)

t The unit delay can be connected in cascade with the network
for N1(z) to form z−1N1(z) and the multiplier can be
connected in parallel with the network for z−1N1(z) to form
a0 + z−1N1(z).
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Direct Realization Cont’d

· · ·
Y (z) = [a0 + z−1N1(z)]X (z)

t There are two possible realizations as follows:

Y(z)X(z)

Y(z)X(z)

N1(z)

N1(z)

a0

a0
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Direct Realization Cont’d

· · ·
N1(z) =

N∑
i=1

aiz
−i+1

t Proceeding as before, we can now write

N1(z) = a1 + z−1
N∑
i=2

aiz
−i+2 = a1 + z−1N2(z)

where

N2(z) =
N∑
i=2

aiz
−i+2
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Direct Realization Cont’d

· · ·
N1(z) = a1 + z−1N2(z)

t Therefore, transfer function N1(z) can be realized by using

– a multiplier with a constant a1

– a unit delay, and

– a network with a transfer function N2(z)

t The unit delay can be connected in cascade with the network
for N2(z) to form z−1N2(z) and the multiplier can be
connected in parallel with the network for z−1N2(z) to form
a0 + z−1N2(z).
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Direct Realization Cont’d
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Direct Realization Cont’d

N2(z)

N2(z)

a1

a1
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Direct Realization Cont’d

t Since there are two possible realizations for N1(z) it follows
that there are four possible realizations for N(z) as illustrated
in the next two slides.
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Direct Realization Cont’d

N2(z)

a0

a1

a0

a1

N2(z)
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Direct Realization Cont’d

N2(z)

a0

a1

a0

a1

N2(z)
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Direct Realization Cont’d

t Repeating the same procedure N times will reduce the
realization of NN(z) to a single multiplier with a constant aN .

t Since there are N iterations in the procedure, and each
iteration multiplies the number of distinct realizations by 2, a
total of 2N realizations are possible for N(z).t Three of the possible realizations are shown in the next two
slides.
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Direct Realization Cont’d

a0a1aN−1aN

(b)

a0

a1

aN−1 aN

(a)
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Direct Realization Cont’d

a0

a1

a2

a3

aN

(c)
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Direct Realization Cont’d

t Another interesting realization can be obtained from the first
of the previous structures by noting that the outputs of
multipliers a0, a1, . . . , aN can be added in the reverse order
without changing the output.

a0

a1

aN−1 aN

(a)
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Direct Realization Cont’d

a0

a1

aN−1 aN

(a)

a0 a1 aN−1 aN

(d )
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Direct Realization Cont’d

t The derived new structure is seen to be highly regular and it
is, therefore, attractive for VLSI implementation (see
Sec. 8.3).
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Direct Realization Cont’d

t A causal recursive digital filter characterized by an Nth-order
transfer function can be represented by the equation

Y (z)

X (z)
= H(z) =

N(z)

D(z)
=

N(z)

1 + D ′(z)

where

N(z) =
N∑
i=0

aiz
−i and D ′(z) =

N∑
i=1

biz
−i

t We can write

Y (z) = N(z)X (z) − D ′(z)Y (z)

or Y (z) = U1(z) + U2(z)

where U1(z) = N(z)X (z) and U2(z) = −D ′(z)Y (z)

Frame # 32 Slide # 80 A. Antoniou Digital Filters – Secs. 9.1, 9.2.1, 9.2.2



Direct Realization Cont’d

t A causal recursive digital filter characterized by an Nth-order
transfer function can be represented by the equation

Y (z)

X (z)
= H(z) =

N(z)

D(z)
=

N(z)

1 + D ′(z)

where

N(z) =
N∑
i=0

aiz
−i and D ′(z) =

N∑
i=1

biz
−i

t We can write

Y (z) = N(z)X (z) − D ′(z)Y (z)

or Y (z) = U1(z) + U2(z)

where U1(z) = N(z)X (z) and U2(z) = −D ′(z)Y (z)

Frame # 32 Slide # 81 A. Antoniou Digital Filters – Secs. 9.1, 9.2.1, 9.2.2



Direct Realization Cont’d

· · ·
Y (z) = N(z)X (z) − D ′(z)Y (z) (A)

or Y (z) = U1(z) + U2(z)

where U1(z) = N(z)X (z) and U2(z) = −D ′(z)Y (z)t Therefore, the recursive filter can be obtained by realizing N(z) and
−D ′(z) as nonrecursive filters and then connecting the resulting two
nonrecursive filters as shown in the block diagram:

X(z) Y(z)
U1(z)

U2(z)

N(z)

T−D
′
(z)
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Direct Realization Cont’d

t Each of the two nonrecursive filters can be realized using the
procedure outlined before.

t Since

N(z) =
N∑
i=0

aiz
−i and − D ′(z) = −

N∑
i=1

biz
−i

the only difference between the two transfer functions is that

– the coefficient for z0 is zero in −D ′(z) and

– its coefficients are the negatives of the coefficients of the
denominator of the transfer function.
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Direct Realization Cont’d
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Example

Realize the transfer function

H(z) =
a0 + a1z

−1 + a2z
−2

1 + b1z−1 + b2z−2

using the direct method.

Solution The recursive structure can be obtained by realizing the
nonrecursive transfer functions

N(z) = a0 + a1z
−1 + a2z

−2 and − D ′(z) = −b1z
−1 − b2z

−2
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Example Cont’d

A pair of possible realizations for N(z) and −D ′(z) are as shown:

a1

a2

a0

−b2

−b1

X(z) U1(z)

U2(z)
Y(z)

Frame # 36 Slide # 88 A. Antoniou Digital Filters – Secs. 9.1, 9.2.1, 9.2.2



Example Cont’d

Connecting the realizations for N(z) and −D ′(z) according to the
block diagram, we get:

a1

a2

a0

−b2

−b1

X(z)

U1(z)

U2(z)

Y(z)

A

B

C

Frame # 37 Slide # 89 A. Antoniou Digital Filters – Secs. 9.1, 9.2.1, 9.2.2



Example Cont’d

Now if we combine adders A, B, and C into a 5-input adder, we
get the simplified structure shown:

a1

a2

−b2

−b1

a0

(a)
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Example Cont’d

Another possible direct realization that can be obtained using the
same method is as follows:

a1a2 a0

−b2−b1

(b)
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Direct Canonic Realization

t The minimum number of unit delays required to realize an
Nth-order transfer function is N.

t If the number of unit delays in an Nth-order digital-filter
structure is N, then the structure is said to be canonic.t The structures that can be obtained with the direct realization
require 2N unit delays.t However, one of the many possibilities can be rendered
canonic through a simple technique, as will be shown.
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Direct Canonic Realization Cont’d

t The equation

Y (z)

X (z)
= H(z) =

N(z)

D(z)
=

N(z)

1 + D ′(z)

can be expressed

Y (z) =
N(z)X (z)

1 + D ′(z)

or

Y (z) = N(z)Y ′(z) where Y ′(z) =
X (z)

1 + D ′(z)
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Direct Canonic Realization Cont’d

· · ·
Y (z) = N(z)Y ′(z) where Y ′(z) =

X (z)

1 + D ′(z)t These equations represent the system shown in the figure.

t Therefore, a digital-filter structure can be obtained by
realizing the transfer functions

N(z) and
1

1 + D ′(z)

and then connecting the two realizations as shown:

X(z) Y(z)N(z)

(a)

−D'(z)

Y'(z)
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Direct Canonic Realization Cont’d
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Direct Canonic Realization Cont’d

t Using the direct realization method, the configuration shown
can be obtained.

t We note that the signals at nodes A′, B ′ , . . . are exactly the
same as the signals at nodes A, B, . . . and, therefore, nodes
A, B, . . . can be connected to nodes A′, B ′ , . . . and one set
of unit delays can be eliminated.

a0

a1

a2

aN

−b1

−b2

−bN

X(z) Y(z)
Y'(z)

A A'

B B'

(b)
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Direct Canonic Realization Cont’d

−b1

−b2

−bN

X(z)

a0

a1

a2

aN

Y(z)
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This slide concludes the presentation.

Thank you for your attention.

Frame # 45 Slide # 102 A. Antoniou Digital Filters – Secs. 9.1, 9.2.1, 9.2.2


