Chapter 9 REALIZATION 9.2.3 State-Space Realization 9.2.4 Lattice Realization 9.2.5 Cascade Realization 9.2.6 Parallel Realization 9.2.7 Transposition

> Copyright © 2018 Andreas Antoniou Victoria, BC, Canada Email: aantoniou@ieee.org

> > July 10, 2018

Frame #1 Slide #1

A. Antoniou

イロン 不同 とくほど 不同 とう

Э

State-Space Realization

Another approach to the realization of digital filters is to start with the state-space characterization:

$$\mathbf{q}(nT + T) = \mathbf{A}\mathbf{q}(nT) + \mathbf{b}x(nT)$$
$$y(nT) = \mathbf{c}^{T}\mathbf{q}(nT) + dx(nT)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

State-Space Realization

Another approach to the realization of digital filters is to start with the state-space characterization:

$$\mathbf{q}(nT + T) = \mathbf{A}\mathbf{q}(nT) + \mathbf{b}x(nT)$$
$$y(nT) = \mathbf{c}^{T}\mathbf{q}(nT) + dx(nT)$$

The state-space equations can be written as

$$q_i(nT + T) = \sum_{j=1}^{N} a_{ij}q_j(nT) + b_ix(nT) \text{ for } i = 1, 2, ..., N$$
$$y(nT) = \sum_{j=1}^{N} c_jq_j(nT) + d_0x(nT)$$

Frame # 2 Slide # 3

・ロト ・四ト ・ヨト ・ヨト

State-Space Realization

Another approach to the realization of digital filters is to start with the state-space characterization:

$$\mathbf{q}(nT + T) = \mathbf{A}\mathbf{q}(nT) + \mathbf{b}x(nT)$$
$$y(nT) = \mathbf{c}^{T}\mathbf{q}(nT) + dx(nT)$$

The state-space equations can be written as

$$q_i(nT + T) = \sum_{j=1}^{N} a_{ij}q_j(nT) + b_ix(nT) \text{ for } i = 1, 2, ..., N$$
$$y(nT) = \sum_{j=1}^{N} c_jq_j(nT) + d_0x(nT)$$

A realization can now be obtained by converting the signal flow graph for the state-space equations into a network.

Frame # 2 Slide # 4

Frame # 3 Slide # 5

A. Antoniou

Digital Filters - Secs. 9.2.3-9.2.7

Example

A discrete-time system can be represented by the state-space equations

$$\mathbf{q}(nT+T) = \mathbf{A}\mathbf{q}(nT) + \mathbf{b}\mathbf{x}(nT)$$

$$y(nT) = \mathbf{c}^{T}\mathbf{q}(nT) + d\mathbf{x}(nT)$$

where

$$\mathbf{A} = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} m_1 \\ m_2 \end{bmatrix}, \ d = 2$$

Obtain a state-space realization.

Frame # 4 Slide # 6

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Э

Solution For a general second-order system, we have

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}, \ d = d_0$$

Hence the state-space equations can be expressed as

$$q_1(nT + T) = a_{11}q_1(nT) + a_{12}q_2(nT) + b_1x(nT)$$

$$q_2(nT + T) = a_{21}q_1(nT) + a_{22}q_2(nT) + b_2x(nT)$$

$$y(nT) = c_1q_1(nT) + c_2(nT)q_2(nT) + dx(nT)$$

Frame # 5 Slide # 7

・ロト ・四ト ・ヨト ・ヨト

Signal flow graph:

Frame # 6 Slide # 8

・ロト ・回ト ・ヨト ・ヨト 三日

For the problem at hand, we have

$$a_{11} = m_1, \quad a_{12} = 0, \quad a_{21} = 0, \quad a_{22} = m_2$$

 $b_1 = 1, \quad b_2 = 1, \quad c_1 = m_1, \quad c_2 = m_2, \quad d_0 = 2$

The required network can be obtained by replacing summing nodes by adders, distribution nodes by distribution nodes, and transmittances by multipliers and unit delays as appropriate.

Frame # 7 Slide # 9

・ロト ・四ト ・ヨト ・ヨト

State-space structures tend to require more elements.

Frame # 8 Slide # 10

State-space structures tend to require more elements.

However, they also offer certain advantages, as follows:

イロン 不同 とくほと 不良 とう

- State-space structures tend to require more elements.
- However, they also offer certain advantages, as follows:
 - Reduced signal-to-noise ratios can be achieved.

イロン イヨン イヨン イヨン

- State-space structures tend to require more elements.
- However, they also offer certain advantages, as follows:
 - Reduced signal-to-noise ratios can be achieved.
 - A certain type of oscillations due to nonlinearities, known as parasitic oscillations can be eliminated in these structures (see Chap. 14).

イロン イヨン イヨン イヨン

Lattice Realization

The lattice method was proposed by Gray and Markel and it is based on the configuration shown.

Frame # 9 Slide # 14

ヘロト ヘ回ト ヘヨト ヘヨト

A transfer function of the form

$$H(z) = \frac{N(z)}{D(z)} = \frac{\sum_{i=0}^{N} a_i z^{-i}}{1 + \sum_{i=1}^{N} b_i z^{-i}}$$

can be realized by applying a step-by-step recursive algorithm comprising N iterations to obtain a series of polynomials of the form

$$N_j(z) = \sum_{i=0}^j \alpha_{ji} z^{-i}$$
 and $D_j(z) = \sum_{i=0}^j \beta_{ji} z^{-i}$
 $j = N, N - 1, ..., 0.$

Frame # 10 Slide # 15

for

イロト イヨト イヨト イヨト 三日

A transfer function of the form

$$H(z) = \frac{N(z)}{D(z)} = \frac{\sum_{i=0}^{N} a_i z^{-i}}{1 + \sum_{i=1}^{N} b_i z^{-i}}$$

can be realized by applying a step-by-step recursive algorithm comprising N iterations to obtain a series of polynomials of the form

$$N_j(z) = \sum_{i=0}^j \alpha_{ji} z^{-i}$$
 and $D_j(z) = \sum_{i=0}^j \beta_{ji} z^{-i}$

for j = N, N - 1, ..., 0.

Then for each value of j the multiplier constants ν_j and μ_j are evaluated using coefficients α_{jj} and β_{jj} in the above polynomials.

Frame # 10 Slide # 16

<ロ> (四) (四) (三) (三) (三)

1. Let $N_j(z) = N(z)$ and $D_j(z) = D(z)$ and assume that j = N, that is

$$N_N(z) = \sum_{i=0}^{j} \alpha_{ji} z^{-i} = \sum_{i=0}^{N} a_i z^{-i}$$
$$D_N(z) = \sum_{i=0}^{j} \beta_{ji} z^{-i} = \sum_{i=0}^{N} b_i z^{-i} \text{ with } b_0 = 1$$

. . .

$$N_N(z) = \sum_{i=0}^j \alpha_{ji} z^{-i} = \sum_{i=0}^N a_i z^{-i}$$
 and $D_N(z) = \sum_{i=0}^j \beta_{ji} z^{-i} = \sum_{i=0}^N b_i z^{-i}$

2. Obtain ν_j , μ_j , $N_{j-1}(z)$, and $D_{j-1}(z)$ for j = N, N - 1, ..., 2 using the following recursive relations:

$$\nu_{j} = \alpha_{jj}, \quad \mu_{j} = \beta_{jj}$$

$$P_{j}(z) = D_{j}\left(\frac{1}{z}\right)z^{-j} = \sum_{i=0}^{j}\beta_{ji}z^{i-j}$$

$$N_{j-1}(z) = N_{j}(z) - \nu_{j}P_{j}(z) = \sum_{i=0}^{j-1}\alpha_{ji}z^{-i}$$

$$D_{j-1}(z) = \frac{D_{j}(z) - \mu_{j}P_{j}(z)}{1 - \mu_{j}^{2}} = \sum_{i=0}^{j-1}\beta_{ji}z^{-i}$$

Frame # 12 Slide # 18

・ロト ・回ト ・ヨト ・ヨト … ヨ

3. Obtain ν_1 , μ_1 , and $N_0(z)$ as follows:

$$\nu_{1} = \alpha_{11}, \quad \mu_{1} = \beta_{11}$$

$$P_{1}(z) = D_{1}\left(\frac{1}{z}\right)z^{-1} = \beta_{10}z^{-1} + \beta_{11}$$

$$N_{0}(z) = N_{1}(z) - \nu_{1}P_{1}(z) = \alpha_{00}$$

Frame # 13 Slide # 19

・ロト ・回ト ・ヨト ・ヨト 三日

3. Obtain ν_1 , μ_1 , and $N_0(z)$ as follows:

$$\nu_{1} = \alpha_{11}, \quad \mu_{1} = \beta_{11}$$

$$P_{1}(z) = D_{1}\left(\frac{1}{z}\right)z^{-1} = \beta_{10}z^{-1} + \beta_{11}$$

$$N_{0}(z) = N_{1}(z) - \nu_{1}P_{1}(z) = \alpha_{00}$$

4. Complete the realization by letting

$$\nu_0 = \alpha_{00}$$

Frame # 13 Slide # 20

・ロト ・回ト ・ヨト ・ヨト ・ヨ

Example

Realize the transfer function

$$H(z) = \frac{a_0 + a_1 z^{-1} + a_2 z^{-2}}{1 + b_1 z^{-1} + b_2 z^{-2}}$$

using the lattice method.

Solution

Step 1 We can write

$$N_2(z) = \alpha_{20} + \alpha_{21}z^{-1} + \alpha_{22}z^{-2} = a_0 + a_1z^{-1} + a_2z^{-2}$$
$$D_2(z) = \beta_{20} + \beta_{21}z^{-1} + \beta_{22}z^{-2} = 1 + b_1z^{-1} + b_2z^{-2}$$

Frame # 14 Slide # 21

・ロト ・回ト ・ヨト ・ヨト … ヨ

Step 2: For
$$j = 2$$
, we get
 $\nu_2 = \alpha_{22} = a_2$ $\mu_2 = \beta_{22} = b_2$
 $P_2(z) = D_2\left(\frac{1}{z}\right)z^{-2} = z^{-2} + b_1z^{-1} + b_2 = \beta_{20}z^{-2} + \beta_{21}z^{-1} + \beta_{22}$
 $N_1(z) = N_2(z) - \nu_2 P_2(z) = a_0 + a_1z^{-1} + a_2z^{-2} - \nu_2(z^{-2} + b_1z^{-1} + b_2)$
 $= \alpha_{10} + \alpha_{11}z^{-1}$
 $D_1(z) = \frac{D_2(z) - \mu_2 P_2(z)}{1 - \mu_2^2} = \frac{1 + b_1z^{-1} + b_2z^{-2} - \mu_2(z^{-2} + b_1z^{-1} + b_2)}{1 - \mu_2^2}$
 $= \beta_{10} + \beta_{11}z^{-1}$

where

$$lpha_{10} = a_0 - a_2 b_2$$
 $lpha_{11} = a_1 - a_2 b_1$
 $eta_{10} = 1, \quad eta_{11} = rac{b_1}{1 + b_2}$

Frame # 15 Slide # 22

・ロト ・四ト ・ヨト ・ヨト 三日

Step 3 Similarly, for j = 1 we have

$$\nu_{1} = \alpha_{11} = a_{1} - a_{2}b_{1} \quad \mu_{1} = \beta_{11} = \frac{b_{1}}{1 + b_{2}}$$

$$P_{1}(z) = D_{1}\left(\frac{1}{z}\right)z^{-1} = \beta_{10}z^{-1} + \beta_{11}$$

$$N_{0}(z) = N_{1}(z) - \nu_{1}P_{1}(z) = \alpha_{10} + \alpha_{11}z^{-1} - \nu_{1}(\beta_{10}z^{-1} + \beta_{11}) = \alpha_{00}$$

where

$$lpha_{00} = (a_0 - a_2 b_2) - rac{(a_1 - a_2 b_1)b_1}{1 + b_2}$$

Frame # 16 Slide # 23

A. Antoniou

Digital Filters - Secs. 9.2.3-9.2.7

・ロト ・回ト ・ヨト ・ヨト 三日

Step 3 Similarly, for j = 1 we have

$$\nu_{1} = \alpha_{11} = a_{1} - a_{2}b_{1} \quad \mu_{1} = \beta_{11} = \frac{b_{1}}{1 + b_{2}}$$

$$P_{1}(z) = D_{1}\left(\frac{1}{z}\right)z^{-1} = \beta_{10}z^{-1} + \beta_{11}$$

$$N_{0}(z) = N_{1}(z) - \nu_{1}P_{1}(z) = \alpha_{10} + \alpha_{11}z^{-1} - \nu_{1}(\beta_{10}z^{-1} + \beta_{11}) = \alpha_{00}$$

where

$$lpha_{00} = (a_0 - a_2 b_2) - rac{(a_1 - a_2 b_1)b_1}{1 + b_2}$$

Step 4: Finally, step 4 gives

$$\nu_0 = \alpha_{00}$$

Frame # 16 Slide # 24

イロト イヨト イヨト イヨト 二日

Summarizing, the multiplier constants for a general second-order lattice realization are as follows:

$$\begin{array}{rcl} \nu_0 & = & (a_0-a_2b_2)-\frac{(a_1-a_2b_1)b_1}{1+b_2} \\ \nu_1 & = & a_1-a_2b_1, \quad \nu_2=a_2 \\ \mu_1 & = & \frac{b_1}{1+b_2}, \quad \mu_2=b_2 \end{array}$$

イロト イヨト イヨト イヨト 三日

Frame # 18 Slide # 26

A. Antoniou Digital Filters – Secs. 9.2.3-9.2.7

A problem associated with the lattice configuration presented is that it requires a large number of multipliers.

・ロト ・回ト ・ヨト ・ヨト ・ヨ

- A problem associated with the lattice configuration presented is that it requires a large number of multipliers.
- Fortunately, a more economical lattice structure is possible.

<ロ> (四) (四) (三) (三) (三) (三)

- A problem associated with the lattice configuration presented is that it requires a large number of multipliers.
- Fortunately, a more economical lattice structure is possible.
- It turns out that the 2-multiplier lattice module shown earlier can be replaced by one of two 1-multiplier lattice modules as shown in the next slide.

イロン イヨン イヨン イヨン

Frame # 20 Slide # 30

A. Antoniou

Digital Filters - Secs. 9.2.3-9.2.7

크

Parameters μ_j for j = 1, 2, ..., N stay the same as before.

Frame # 21 Slide # 31

- Parameters μ_j for $j = 1, 2, \ldots, N$ stay the same as before.
- However, parameters ν_i need to be recalculated as

$$\tilde{\nu}_j = \frac{\nu_j}{\xi_j}$$

where

$$\xi_j = \begin{cases} 1 & \text{for } j = N \\ \prod_{i=j}^{N-1} (1 + \varepsilon_i \mu_{i+1}) & \text{for } j = 0, 1, \dots, N-1 \end{cases}$$

- Parameters μ_j for $j = 1, 2, \ldots, N$ stay the same as before.
- However, parameters ν_i need to be recalculated as

$$\tilde{\nu}_j = \frac{\nu_j}{\xi_j}$$

where

$$\xi_j = \begin{cases} 1 & \text{for } j = N\\ \prod_{i=j}^{N-1} (1 + \varepsilon_i \mu_{i+1}) & \text{for } j = 0, 1, \dots, N-1 \end{cases}$$

Parameter ε_i takes the value of +1 or -1 depending on which of the two 1-multiplier lattice modules is used.

Frame # 21 Slide # 33

イロン イロン イヨン イヨン 三日

Cascade Realization

Consider an arbitrary number of filter sections connected in cascade as shown and assume that the *i*th section is characterized by

$$Y_i(z) = H_i(z)X_i(z)$$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

크

We can write

$$Y_{1}(z) = H_{1}(z)X_{1}(z) = H_{1}(z)X(z)$$

$$Y_{2}(z) = H_{2}(z)X_{2}(z) = H_{2}(z)Y_{1}(z) = H_{1}(z)H_{2}(z)X(z)$$

$$Y_{3}(z) = H_{3}(z)X_{3}(z) = H_{3}(z)Y_{2}(z) = H_{1}(z)H_{2}(z)H_{3}(z)X(z)$$

$$Y(z) = Y_M(z) = H_M(z)Y_{M-1}(z) = H_1(z)H_2(z)\cdots H_M(z)X(z)$$

Frame # 23 Slide # 35

・ロト ・回ト ・ヨト ・ヨト ・ヨ

Therefore, the overall transfer function of a cascade arrangement of filter sections is equal to the *product* of the individual transfer functions, that is,

$$H(z) = \prod_{i=1}^{M} H_i(z)$$

イロト イヨト イヨト イヨト 三日

Therefore, the overall transfer function of a cascade arrangement of filter sections is equal to the *product* of the individual transfer functions, that is,

$$H(z) = \prod_{i=1}^{M} H_i(z)$$

An Nth-order transfer function can be factorized into a product of first- and second-order transfer functions of the form

$$H_i(z) = rac{a_{0i} + a_{1i}z^{-1}}{1 + b_{1i}z^{-1}}$$
 and $H_i(z) = rac{a_{0i} + a_{1i}z^{-1} + a_{2i}z^{-2}}{1 + b_{1i}z^{-1} + b_{2i}z^{-2}}$

Frame # 24 Slide # 37

<ロ> (四) (四) (三) (三) (三)

Therefore, the overall transfer function of a cascade arrangement of filter sections is equal to the *product* of the individual transfer functions, that is,

$$H(z) = \prod_{i=1}^{M} H_i(z)$$

An Nth-order transfer function can be factorized into a product of first- and second-order transfer functions of the form

$$H_i(z) = rac{a_{0i} + a_{1i}z^{-1}}{1 + b_{1i}z^{-1}}$$
 and $H_i(z) = rac{a_{0i} + a_{1i}z^{-1} + a_{2i}z^{-2}}{1 + b_{1i}z^{-1} + b_{2i}z^{-2}}$

Each of these low-order transfer functions can be realized using any one of the methods described.

Frame # 24 Slide # 38

(日本)(日本)(日本)

For example, an arbitrary transfer function can be realized by using a cascade arrangement of canonic sections as shown.

Frame # 25 Slide # 39

イロト イヨト イヨト イヨト

Э

Parallel Realization

Another realization comprising first- and second-order filter sections is based on the parallel configuration shown.

Frame # 26 Slide # 40

イロト イヨト イヨト イヨト

э

Parallel Realization Cont'd

• We note that all the parallel sections have a common input, i.e., $X_1(z) = X_2(z) = \cdots = X_M(z) = X(z)$.

・ロト・西ト・ヨト・ヨト・ 日・ のへぐ

Parallel Realization Cont'd

• We note that all the parallel sections have a common input, i.e., $X_1(z) = X_2(z) = \cdots = X_M(z) = X(z)$.

Hence

$$\begin{aligned} Y(z) &= Y_1(z) + Y_2(z) + \dots + Y_M(z) \\ &= H_1(z)X_1(z) + H_2(z)X_2(z) + \dots + H_M(z)X_M(z) \\ &= H_1(z)X(z) + H_2(z)X(z) + \dots + H_M(z)X(z) \\ &= [H_1(z) + H_2(z) + \dots + H_M(z)]X(z) \\ &= H(z)X(z) \end{aligned}$$

where

$$H(z) = \sum_{i=1}^{M} H_i(z)$$

Frame # 27 Slide # 42

Digital Filters - Secs. 9.2.3-9.2.7

・ロト・西ト・ヨト・ヨト・ 日・ のへぐ

Example

Obtain a parallel realization of the transfer function

$$H(z) = \frac{10z^4 - 3.7z^3 - 1.28z^2 + 0.99z}{(z^2 - z + 0.34)(z^2 + 0.9z + 0.2)}$$

using canonic sections.

Solution The transfer function can be expressed as

$$H(z) = \frac{10z^4 - 3.7z^3 - 1.28z^2 + 0.99z}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$

where

$$p_1, p_2 = 0.5 \mp j0.3$$

 $p_3 = -0.4$
 $p_4 = -0.5$

Frame # 28 Slide # 43

ヘロン ヘロン ヘビン ヘビン

Э

If we expand H(z)/z into partial fractions, we get

$$\frac{H(z)}{z} = \frac{R_1}{z - 0.5 + j0.3} + \frac{R_2}{z - 0.5 - j0.3} + \frac{R_3}{z + 0.4} + \frac{R_4}{z + 0.5}$$

where

 ${\it R}_1=1, ~{\it R}_2=1, ~{\it R}_3=3, ~{\it R}_4=5$

Frame # 29 Slide # 44

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

If we expand H(z)/z into partial fractions, we get

$$\frac{H(z)}{z} = \frac{R_1}{z - 0.5 + j0.3} + \frac{R_2}{z - 0.5 - j0.3} + \frac{R_3}{z + 0.4} + \frac{R_4}{z + 0.5}$$

where

$$R_1 = 1, \quad R_2 = 1, \quad R_3 = 3, \quad R_4 = 5$$

Thus

$$H(z) = \frac{z}{z - 0.5 + j0.3} + \frac{z}{z - 0.5 - j0.3} + \frac{3z}{z + 0.4} + \frac{5z}{z + 0.5}$$

Frame # 29 Slide # 45

・ロト ・回ト ・ヨト ・ヨト ・ヨ

$$H(z) = \frac{z}{z - 0.5 + j0.3} + \frac{z}{z - 0.5 - j0.3} + \frac{3z}{z + 0.4} + \frac{5z}{z + 0.5}$$

Combining the first two and the last two partial fractions into second-order transfer functions, we get

$$H(z) = H_1(z) + H_2(z)$$

where

$$H_1(z) = rac{2-z^{-1}}{1-z^{-1}+0.34z^{-2}}$$
 and $H_2(z) = rac{8+3.5z^{-1}}{1+0.9z^{-1}+0.2z^{-2}}$

Frame # 30 Slide # 46

$$H(z) = \frac{z}{z - 0.5 + j0.3} + \frac{z}{z - 0.5 - j0.3} + \frac{3z}{z + 0.4} + \frac{5z}{z + 0.5}$$

Combining the first two and the last two partial fractions into second-order transfer functions, we get

$$H(z) = H_1(z) + H_2(z)$$

where

$$H_1(z) = rac{2-z^{-1}}{1-z^{-1}+0.34z^{-2}}$$
 and $H_2(z) = rac{8+3.5z^{-1}}{1+0.9z^{-1}+0.2z^{-2}}$

Using canonic structures for the two second-order transfer functions, the structure on the next slide is readily obtained.

Frame # 30 Slide # 47

<ロ> (四) (四) (三) (三) (三)

Frame # 31 Slide # 48

Digital Filters – Secs. 9.2.3-9.2.7

Ð,

Transpose

Given a signal flow graph with inputs j = 1, 2, ..., J and outputs k = 1, 2, ..., K, a corresponding signal flow graph can be derived by reversing the direction in each and every branch such that the J input nodes become output nodes and the K output nodes become input nodes.

Frame # 32 Slide # 49

A. Antoniou

Digital Filters - Secs. 9.2.3-9.2.7

Transpose

- Given a signal flow graph with inputs j = 1, 2, ..., J and outputs k = 1, 2, ..., K, a corresponding signal flow graph can be derived by reversing the direction in each and every branch such that the J input nodes become output nodes and the K output nodes become input nodes.
- The signal flow graph so derived is said to be the *transpose* of the original signal flow graph.

Frame # 32 Slide # 50

Transpose Cont'd

■ If a signal flow graph and its transpose are characterized by transfer functions $H_{ik}(z)$ and $H_{ki}(z)$, respectively, then

$$H_{jk}(z) = H_{kj}(z)$$

イロト イヨト イヨト イヨト 三日

Transpose Cont'd

■ If a signal flow graph and its transpose are characterized by transfer functions $H_{jk}(z)$ and $H_{kj}(z)$, respectively, then

$$H_{jk}(z) = H_{kj}(z)$$

In effect, given a digital-filter structure a corresponding transpose structure can be obtained that has the same transfer function.

(日) (四) (三) (三) (三)

Transpose Cont'd

■ If a signal flow graph and its transpose are characterized by transfer functions $H_{jk}(z)$ and $H_{kj}(z)$, respectively, then

$$H_{jk}(z) = H_{kj}(z)$$

- In effect, given a digital-filter structure a corresponding transpose structure can be obtained that has the same transfer function.
- Sometimes, the derived transpose structure has improved features relative to the original structure.

(日) (四) (三) (三) (三)

Example

Frame # 34 Slide # 54

A. Antoniou

Digital Filters - Secs. 9.2.3-9.2.7

æ

Digital Filters – Secs. 9.2.3-9.2.7

▲ロ > ▲ 圖 > ▲ 国 > ▲ 国 > -

Ð,

(*d*)

Frame # 36 Slide # 56

A. Antoniou

Digital Filters - Secs. 9.2.3-9.2.7

Ð,

This slide concludes the presentation. Thank you for your attention.