
Chapter 9
REALIZATION

9.2.3 State-Space Realization
9.2.4 Lattice Realization
9.2.5 Cascade Realization
9.2.6 Parallel Realization

9.2.7 Transposition

Copyright c© 2018 Andreas Antoniou
Victoria, BC, Canada

Email: aantoniou@ieee.org

July 10, 2018

Frame # 1 Slide # 1 A. Antoniou Digital Filters – Secs. 9.2.3-9.2.7



State-Space Realization

Another approach to the realization of digital filters is to start with
the state-space characterization:

q(nT + T ) = Aq(nT ) + bx(nT )

y(nT ) = cTq(nT ) + dx(nT )

The state-space equations can be written as

qi (nT + T ) =
N∑
j=1

aijqj(nT ) + bix(nT ) for i = 1, 2, . . . , N

y(nT ) =
N∑
j=1

cjqj(nT ) + d0x(nT )

A realization can now be obtained by converting the signal flow
graph for the state-space equations into a network.

Frame # 2 Slide # 2 A. Antoniou Digital Filters – Secs. 9.2.3-9.2.7



State-Space Realization

Another approach to the realization of digital filters is to start with
the state-space characterization:

q(nT + T ) = Aq(nT ) + bx(nT )

y(nT ) = cTq(nT ) + dx(nT )

The state-space equations can be written as

qi (nT + T ) =
N∑
j=1

aijqj(nT ) + bix(nT ) for i = 1, 2, . . . , N

y(nT ) =
N∑
j=1

cjqj(nT ) + d0x(nT )

A realization can now be obtained by converting the signal flow
graph for the state-space equations into a network.

Frame # 2 Slide # 3 A. Antoniou Digital Filters – Secs. 9.2.3-9.2.7



State-Space Realization

Another approach to the realization of digital filters is to start with
the state-space characterization:

q(nT + T ) = Aq(nT ) + bx(nT )

y(nT ) = cTq(nT ) + dx(nT )

The state-space equations can be written as

qi (nT + T ) =
N∑
j=1

aijqj(nT ) + bix(nT ) for i = 1, 2, . . . , N

y(nT ) =
N∑
j=1

cjqj(nT ) + d0x(nT )

A realization can now be obtained by converting the signal flow
graph for the state-space equations into a network.

Frame # 2 Slide # 4 A. Antoniou Digital Filters – Secs. 9.2.3-9.2.7



State-Space Realization Cont’d
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Example

A discrete-time system can be represented by the state-space
equations

q(nT + T ) = Aq(nT ) + bx(nT )

y(nT ) = cTq(nT ) + dx(nT )

where

A =

[
m1 0
0 m2

]
, b =

[
1
1

]
, c =

[
m1

m2

]
, d = 2

Obtain a state-space realization.
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Example Cont’d

Solution For a general second-order system, we have

A =

[
a11 a12
a21 a22

]
, b =

[
b1
b2

]
, c =

[
c1
c2

]
, d = d0

Hence the state-space equations can be expressed as

q1(nT + T ) = a11q1(nT ) + a12q2(nT ) + b1x(nT )

q2(nT + T ) = a21q1(nT ) + a22q2(nT ) + b2x(nT )

y(nT ) = c1q1(nT ) + c2(nT )q2(nT ) + dx(nT )
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Example Cont’d

Signal flow graph:
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Example Cont’d

For the problem at hand, we have

a11 = m1, a12 = 0, a21 = 0, a22 = m2

b1 = 1, b2 = 1, c1 = m1, c2 = m2, d0 = 2

The required network can be obtained by replacing summing nodes
by adders, distribution nodes by distribution nodes, and
transmittances by multipliers and unit delays as appropriate.

Frame # 7 Slide # 9 A. Antoniou Digital Filters – Secs. 9.2.3-9.2.7



State-Space Realization Cont’d

State-space structures tend to require more elements.

However, they also offer certain advantages, as follows:

– Reduced signal-to-noise ratios can be achieved.

– A certain type of oscillations due to nonlinearities, known as
parasitic oscillations can be eliminated in these structures (see
Chap. 14).
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Lattice Realization

The lattice method was proposed by Gray and Markel and it is
based on the configuration shown.
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Lattice Realization Cont’d

A transfer function of the form

H(z) =
N(z)

D(z)
=

∑N
i=0 aiz

−i

1 +
∑N

i=1 biz
−i

can be realized by applying a step-by-step recursive algorithm
comprising N iterations to obtain a series of polynomials of the form

Nj(z) =

j∑
i=0

αjiz
−i and Dj(z) =

j∑
i=0

βjiz
−i

for j = N, N − 1, . . . , 0.

Then for each value of j the multiplier constants νj and µj are
evaluated using coefficients αjj and βjj in the above polynomials.
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Lattice Realization Cont’d

1. Let Nj(z) = N(z) and Dj(z) = D(z) and assume that j = N,
that is

NN(z) =

j∑
i=0

αjiz
−i =

N∑
i=0

aiz
−i

DN(z) =

j∑
i=0

βjiz
−i =

N∑
i=0

biz
−i with b0 = 1
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Lattice Realization Cont’d

· · ·
NN(z) =

j∑
i=0

αjiz
−i =

N∑
i=0

aiz
−i and DN(z) =

j∑
i=0

βjiz
−i =

N∑
i=0

biz
−i

2. Obtain νj , µj , Nj−1(z), and Dj−1(z) for j = N,N − 1, . . . , 2 using
the following recursive relations:

νj = αjj , µj = βjj

Pj(z) = Dj

(
1

z

)
z−j =

j∑
i=0

βjiz
i−j

Nj−1(z) = Nj(z) − νjPj(z) =

j−1∑
i=0

αjiz
−i

Dj−1(z) =
Dj(z) − µjPj(z)

1 − µ2
j

=

j−1∑
i=0

βjiz
−i
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Lattice Realization Cont’d

3. Obtain ν1, µ1, and N0(z) as follows:

ν1 = α11, µ1 = β11

P1(z) = D1

(
1

z

)
z−1 = β10z

−1 + β11

N0(z) = N1(z) − ν1P1(z) = α00

4. Complete the realization by letting

ν0 = α00
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Example

Realize the transfer function

H(z) =
a0 + a1z

−1 + a2z
−2

1 + b1z−1 + b2z−2

using the lattice method.

Solution

Step 1 We can write

N2(z) = α20 + α21z
−1 + α22z

−2 = a0 + a1z
−1 + a2z

−2

D2(z) = β20 + β21z
−1 + β22z

−2 = 1 + b1z
−1 + b2z

−2
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Example Cont’d

Step 2: For j = 2, we get

ν2 = α22 = a2 µ2 = β22 = b2

P2(z) = D2

(
1

z

)
z−2 = z−2 + b1z

−1 + b2 = β20z
−2 + β21z

−1 + β22

N1(z) = N2(z) − ν2P2(z) = a0 + a1z
−1 + a2z

−2 − ν2(z−2 + b1z
−1 + b2)

= α10 + α11z
−1

D1(z) =
D2(z) − µ2P2(z)

1 − µ2
2

=
1 + b1z

−1 + b2z
−2 − µ2(z−2 + b1z

−1 + b2)

1 − µ2
2

= β10 + β11z
−1

where

α10 = a0 − a2b2 α11 = a1 − a2b1

β10 = 1, β11 =
b1

1 + b2
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Example Cont’d

Step 3 Similarly, for j = 1 we have

ν1 = α11 = a1 − a2b1 µ1 = β11 =
b1

1 + b2

P1(z) = D1

(
1

z

)
z−1 = β10z

−1 + β11

N0(z) = N1(z) − ν1P1(z) = α10 + α11z
−1 − ν1(β10z

−1 + β11) = α00

where

α00 = (a0 − a2b2) − (a1 − a2b1)b1
1 + b2

Step 4: Finally, step 4 gives

ν0 = α00
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Example Cont’d

Step 3 Similarly, for j = 1 we have

ν1 = α11 = a1 − a2b1 µ1 = β11 =
b1

1 + b2

P1(z) = D1

(
1

z

)
z−1 = β10z

−1 + β11

N0(z) = N1(z) − ν1P1(z) = α10 + α11z
−1 − ν1(β10z

−1 + β11) = α00

where

α00 = (a0 − a2b2) − (a1 − a2b1)b1
1 + b2

Step 4: Finally, step 4 gives

ν0 = α00

Frame # 16 Slide # 24 A. Antoniou Digital Filters – Secs. 9.2.3-9.2.7



Example Cont’d

Summarizing, the multiplier constants for a general second-order
lattice realization are as follows:

ν0 = (a0 − a2b2) − (a1 − a2b1)b1
1 + b2

ν1 = a1 − a2b1, ν2 = a2

µ1 =
b1

1 + b2
, µ2 = b2
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Example Cont’d
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Lattice Realization Cont’d

A problem associated with the lattice configuration presented
is that it requires a large number of multipliers.

Fortunately, a more economical lattice structure is possible.

It turns out that the 2-multiplier lattice module shown earlier
can be replaced by one of two 1-multiplier lattice modules as
shown in the next slide.
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Lattice Realization Cont’d
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Lattice Realization Cont’d

Parameters µj for j = 1, 2, . . . , N stay the same as before.

However, parameters νj need to be recalculated as

ν̃j =
νj
ξj

where

ξj =

{
1 for j = N∏N−1

i=j (1 + εiµi+1) for j = 0, 1, . . . , N − 1

Parameter εi takes the value of +1 or −1 depending on which
of the two 1-multiplier lattice modules is used.
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Lattice Realization Cont’d
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Lattice Realization Cont’d
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Cascade Realization

Consider an arbitrary number of filter sections connected in
cascade as shown and assume that the ith section is
characterized by

Yi (z) = Hi (z)Xi (z)

(a)

H1(z) H2(z) H
M

(z)

X1(z) Y1(z) X2(z) X
M

(z)Y2(z) Y
M

(z)

Y(z)X(z)
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Cascade Realization Cont’d

We can write

Y1(z) = H1(z)X1(z) = H1(z)X (z)

Y2(z) = H2(z)X2(z) = H2(z)Y1(z) = H1(z)H2(z)X (z)

Y3(z) = H3(z)X3(z) = H3(z)Y2(z) = H1(z)H2(z)H3(z)X (z)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Y (z) = YM(z) = HM(z)YM−1(z) = H1(z)H2(z) · · ·HM(z)X (z)

(a)

H1(z) H2(z) H
M

(z)

X1(z) Y1(z) X2(z) X
M

(z)Y2(z) Y
M

(z)

Y(z)X(z)
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Cascade Realization Cont’d

Therefore, the overall transfer function of a cascade
arrangement of filter sections is equal to the product of the
individual transfer functions, that is,

H(z) =
M∏
i=1

Hi (z)

An Nth-order transfer function can be factorized into a
product of first- and second-order transfer functions of the
form

Hi (z) =
a0i + a1iz

−1

1 + b1iz−1
and Hi (z) =

a0i + a1iz
−1 + a2iz

−2

1 + b1iz−1 + b2iz−2

Each of these low-order transfer functions can be realized
using any one of the methods described.
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Cascade Realization Cont’d
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Cascade Realization Cont’d

For example, an arbitrary transfer function can be realized by
using a cascade arrangement of canonic sections as shown.

x
i
(nT )

a
2i

−b2i

a1i−b1i

yi(nT )

(b)

(a)

H1(z) H2(z) HM(z)

a
0i

X1(z) Y1(z) X2(z) XM(z)Y2(z) YM(z)

Y(z)X(z)

Frame # 25 Slide # 39 A. Antoniou Digital Filters – Secs. 9.2.3-9.2.7



Parallel Realization

Another realization comprising first- and second-order filter
sections is based on the parallel configuration shown.

HM(z)

H2(z)

H1(z)
Y1(z)

Y2(z)
Y(z)

YM(z)

X1(z)

X2(z)
X(z)

XM(z)
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Parallel Realization Cont’d

We note that all the parallel sections have a common input,
i.e., X1(z) = X2(z) = · · · = XM(z) = X (z).

Hence

Y (z) = Y1(z) + Y2(z) + · · · + YM(z)

= H1(z)X1(z) + H2(z)X2(z) + · · · + HM(z)XM(z)

= H1(z)X (z) + H2(z)X (z) + · · · + HM(z)X (z)

= [H1(z) + H2(z) + · · · + HM(z)]X (z)

= H(z)X (z)

where

H(z) =
M∑
i=1

Hi (z)
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Parallel Realization Cont’d
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Example

Obtain a parallel realization of the transfer function

H(z) =
10z4 − 3.7z3 − 1.28z2 + 0.99z

(z2 − z + 0.34)(z2 + 0.9z + 0.2)

using canonic sections.

Solution The transfer function can be expressed as

H(z) =
10z4 − 3.7z3 − 1.28z2 + 0.99z

(z − p1)(z − p2)(z − p3)(z − p4)

where

p1, p2 = 0.5 ∓ j0.3

p3 = −0.4

p4 = −0.5
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Example Cont’d

If we expand H(z)/z into partial fractions, we get

H(z)

z
=

R1

z − 0.5 + j0.3
+

R2

z − 0.5 − j0.3
+

R3

z + 0.4
+

R4

z + 0.5

where
R1 = 1, R2 = 1, R3 = 3, R4 = 5

Thus

H(z) =
z

z − 0.5 + j0.3
+

z

z − 0.5 − j0.3
+

3z

z + 0.4
+

5z

z + 0.5
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z − 0.5 + j0.3
+

R2

z − 0.5 − j0.3
+

R3

z + 0.4
+

R4

z + 0.5

where
R1 = 1, R2 = 1, R3 = 3, R4 = 5

Thus

H(z) =
z

z − 0.5 + j0.3
+

z

z − 0.5 − j0.3
+

3z

z + 0.4
+

5z

z + 0.5
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Example Cont’d

· · ·
H(z) =

z

z − 0.5 + j0.3
+

z

z − 0.5 − j0.3
+

3z

z + 0.4
+

5z

z + 0.5

Combining the first two and the last two partial fractions into
second-order transfer functions, we get

H(z) = H1(z) + H2(z)

where

H1(z) =
2 − z−1

1 − z−1 + 0.34z−2
and H2(z) =

8 + 3.5z−1

1 + 0.9z−1 + 0.2z−2

Using canonic structures for the two second-order transfer functions, the
structure on the next slide is readily obtained.
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Example Cont’d
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where
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Example Cont’d

3.5

 8

−0.2

−0.9

−1

 2

−0.34

H1(z)

H2(z)
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Transpose

Given a signal flow graph with inputs j = 1, 2, . . . , J and
outputs k = 1, 2, . . . , K , a corresponding signal flow graph
can be derived by reversing the direction in each and every
branch such that the J input nodes become output nodes and
the K output nodes become input nodes.

The signal flow graph so derived is said to be the transpose of
the original signal flow graph.

Signal flow graph

1 2 K

1 2 J

1 2 K

1 2 J

Transpose
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1 2 K

1 2 J

1 2 K
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Transpose Cont’d

If a signal flow graph and its transpose are characterized by
transfer functions Hjk(z) and Hkj(z), respectively, then

Hjk(z) = Hkj(z)

In effect, given a digital-filter structure a corresponding
transpose structure can be obtained that has the same
transfer function.

Sometimes, the derived transpose structure has improved
features relative to the original structure.
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Transpose Cont’d

If a signal flow graph and its transpose are characterized by
transfer functions Hjk(z) and Hkj(z), respectively, then

Hjk(z) = Hkj(z)

In effect, given a digital-filter structure a corresponding
transpose structure can be obtained that has the same
transfer function.

Sometimes, the derived transpose structure has improved
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Example

x(n)
1 2

1

3 4 5a2

E−1

y(n)

a0

a1

−b1

−b2

(b)

E−1

x(nT )

a
2

−b2

a1−b1

y(nT )

(a)

a
0
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Example Cont’d

x(n)
1 2

1

3 4 5a2

E−1

y(n)

a0

a1

−b1

−b2

(b)

E−1

(c)

1 2 3 4 5a2

1

−b2

−b1

a1

a0

E−1

E−1
x
′
(n)y

′
(n)
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Example Cont’d

(c)

(d )

1 2 3 4 5a2

1

−b2

−b1

a1

a0

5

a2

−b2

a1

−b1

a0

4 3 2 1

E−1

E−1

x
′
(n)

x
′
(n)

y
′
(n)

y
′
(n)
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This slide concludes the presentation.

Thank you for your attention.
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