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State-Space Realization

B Another approach to the realization of digital filters is to start with
the state-space characterization:

q(nT + T) = Aq(nT) +bx(nT)
y(nT) = c"q(nT) + dx(nT)
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State-Space Realization

B Another approach to the realization of digital filters is to start with
the state-space characterization:

q(nT + T) = Aq(nT) +bx(nT)
y(nT) = c"q(nT) + dx(nT)

B The state-space equations can be written as

N

Gi(nT+T) = Za;jqj(nT) + bix(nT) for i=1,2,..., N
j=1
N

y(nT) = Z ¢iqi(nT) + dox(nT)
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State-Space Realization

B Another approach to the realization of digital filters is to start with
the state-space characterization:

q(nT + T) = Aq(nT) +bx(nT)
y(nT) = c"q(nT) + dx(nT)

B The state-space equations can be written as

N

Gi(nT+T) = Za;jqj(nT) + bix(nT) for i=1,2,..., N
j=1
N

y(nT) = Z ¢iqi(nT) + dox(nT)

B A realization can now be obtained by converting the signal flow
graph for the state-space equations into a network.
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State-Space Realization cont'd

y(nT)
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A discrete-time system can be represented by the state-space
equations

qQ(nT+T) = Aq(nT)+bx(nT)
y(nT) = c’q(nT)+ dx(nT)

where

A= ™ Ol b M e ™M d22
0 mp 1 my

Obtain a state-space realization.
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Solution For a general second-order system, we have
a a b C
A= [ d2) 1B oAl g g
a1 ax by 5
Hence the state-space equations can be expressed as

ql(nT + T) = allql(nT) =+ alng(nT) + b1X(nT)
q2(nT + T) = 321q1(nT) =+ a22q2(nT) =+ ng(nT)
y(nT) = cagi(nT) + c2(nT)g2(nT) + dx(nT)
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Example cont'd

Signal flow graph:

@T+ 1)
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For the problem at hand, we have

ajr =my, an=0, a1=0, ax=m
bi =1 by=1 ca=m, co=m, d=2

The required network can be obtained by replacing summing nodes
by adders, distribution nodes by distribution nodes, and
transmittances by multipliers and unit delays as appropriate. =

Frame # 7 Slide # 9 A. Antoniou Digital Filters — Secs. 9.2.3-9.2.7



State-Space Realization cont'd

m State-space structures tend to require more elements.
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State-Space Realization cont'd

m State-space structures tend to require more elements.

m However, they also offer certain advantages, as follows:
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State-Space Realization cont'd
m State-space structures tend to require more elements.

m However, they also offer certain advantages, as follows:

— Reduced signal-to-noise ratios can be achieved.
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State-Space Realization cont'd

m State-space structures tend to require more elements.
m However, they also offer certain advantages, as follows:

— Reduced signal-to-noise ratios can be achieved.

— A certain type of oscillations due to nonlinearities, known as
parasitic oscillations can be eliminated in these structures (see
Chap. 14).
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Lattice Realization

m The lattice method was proposed by Gray and Markel and it is
based on the configuration shown.

X(2) o—— ] IR

Ly L L

Vo

+ Y(z)
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Lattice Realization cont'd

m A transfer function of the form

ANz gz
1= D) - 1+ Y0, bz

can be realized by applying a step-by-step recursive algorithm
comprising N iterations to obtain a series of polynomials of the form

j
(z):Zaﬁz—" and Dj(z) = Z,BJ,
i=0

for j=N,N—1,...,0.
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Lattice Realization cont'd

m A transfer function of the form

ANz gz
1= D) - 1+ Y0, bz

can be realized by applying a step-by-step recursive algorithm
comprising N iterations to obtain a series of polynomials of the form

J
(z):Zaﬁz—" and Dj(z) = Zﬁf’
i=0
forj=N,N-1,...,0.

B Then for each value of j the multiplier constants v; and p; are
evaluated using coefficients ay; and 3j; in the above polynomials.
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Lattice Realization cont'd

1. Let Nj(z) = N(z) and Dj(z) = D(z) and assume that j = N,
that is

J N
NN(Z) = E aj,-z_' = E ajz”!
i=0 i=0

J N
DN(Z) = Zﬂj,'z_i = Z b,'Z_i with by =1
i=0 i=0
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Lattice Realization cont'd

J N N
Z) = E Oé_,‘,'Z_’ = Za,-z_’ and DN Zﬁj, Z biz™'
i=0 i=0 i=0

2. Obtain v}, pj, Nj—1(z), and Dj_1(z) for j = N, N —1,...,2 using
the following recursive relations:

vi = i by =B
j
Pi(z) = D C) 27 = Zﬂjiziij
Nj-1(z) = N;(2) Z%:

Dj1(2) = DJ(Z)liﬁl:jlej(Z) = Zﬁj;z_
J i=0
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Lattice Realization cont'd

3. Obtain vy, p1, and No(z) as follows:

vy = o1, p1 =P
1
Pi1(z) = D1 (;) z7l =Bzt + B

No(z) = Ni(z) — v1P1(z) = aoo
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Lattice Realization cont'd

3. Obtain vy, p1, and No(z) as follows:

vy = a1, 1 = P
Pi(z) = D1 <i> z7' =Bzt + B
No(z) = N1(z) — 1 P1(z) = ago
4. Complete the realization by letting

Vg = Gioo
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Example

Realize the transfer function

ap + 31271 + 32272

14+ biz71 + bpz=2

H(z) =

using the lattice method.

Solution

Step 1 We can write

~1 2 ~1 2
No(z) = apo + @212~ + oz " =ag+ a1z~ + a»z

Dy(2) = B0+ o1zt + Barz 2 =1+ bzt 4 bpz 2
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Example cont'd

Step 2: For j =2, we get

v =ap=a 2= [n=Db

1
P>(z) = D> <z) 272 =224 bz 4 by = Pz 2 4 Bzt + B
Nl(Z) = N2(Z) — I/2P2(Z) = ap + 31271 + 32272 — 1/2(272 + b1271 + b2)
= a1o+anz !
Dy(z) — paPa(z) 1+ bzt + boz72 — pp(z72 + byz7 1 + by)
Dl(z) = 1— 2 = 1— 2
H> H>
= Pro+ Buz*
where

o1 = ap — axby o1 = a1 — axby

by
= 17 =
B1o B11 15 b
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Example cont'd

Step 3 Similarly, for j = 1 we have

by
1+ by

v =oq1 =a1 —abt =P =

Pi(z) = Dy (i) 77l =Bzt + Bur

No(z) = Ni(2) — 11P1(2) = a10 + a11z™t — v1(Broz  + B11) = oo
where
(31 — agbl)bl

1+ by

ago = (ap — a2bp) —
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Step 3 Similarly, for j = 1 we have

by
1+ by

v =oq1 =a1 —abt =P =

Pi(z) = Dy (i) z7t = Boz 7t + Bua

No(z) = Ni(2) — 11P1(2) = a10 + a11z™t — v1(Broz  + B11) = oo
where
(31 — agbl)bl

1+ by

ago = (ap — a2bp) —

Step 4: Finally, step 4 gives

Vo = @00
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Summarizing, the multiplier constants for a general second-order
lattice realization are as follows:

(a1 — a2b1)by

vo = (a0 — a2b2) — T+ b
v = a—ab, m=a
H1 = ma u2 = b2
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Example cont'd

X(z) o—— I o]
Ly L; L
VN vj Vi Yo
(a)
@
”
w
& K
®)
(a1 — axb1) by
vy = (ap — axb2) — T 1ih v1=ar— ab
by
Vy = ay, lema o ="5b m
2
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Lattice Realization cont'd

m A problem associated with the lattice configuration presented
is that it requires a large number of multipliers.
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Lattice Realization cont'd

m A problem associated with the lattice configuration presented
is that it requires a large number of multipliers.

m Fortunately, a more economical lattice structure is possible.
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Lattice Realization cont'd

m A problem associated with the lattice configuration presented
is that it requires a large number of multipliers.

m Fortunately, a more economical lattice structure is possible.

m It turns out that the 2-multiplier lattice module shown earlier
can be replaced by one of two 1-multiplier lattice modules as
shown in the next slide.
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Lattice Realization cont'd

D

Hi

]

@&
+

@
Bl
@
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Lattice Realization cont'd

® Parameters p; for j =1, 2, ..., N stay the same as before.

Frame # 21 Slide # 31 A. Antoniou Digital Filters — Secs. 9.2.3-9.2.7



Lattice Realization cont'd

m Parameters p; for j =1, 2, ..., N stay the same as before.

B However, parameters v; need to be recalculated as

~ vj
U= —=
J gj
where
1 forj=N
& = N—1 )
[ (T +eipita) forj=0,1,..., N—1
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Lattice Realization cont'd

m Parameters p; for j =1, 2, ..., N stay the same as before.

® However, parameters v/; need to be recalculated as

~ vj
U= -2*
J gj
where
1 forj=N
& = N—1 )
Hi:j (1+5iﬂi+1) fOI’_]IO, 17 ) N—-1

m Parameter ¢; takes the value of +1 or —1 depending on which
of the two 1-multiplier lattice modules is used.
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Cascade Realization

m Consider an arbitrary number of filter sections connected in
cascade as shown and assume that the ith section is
characterized by

Yi(z) = Hi(2)Xi(2)

X(2) H(z) Hy?) p—>——-— Hy@ ——oy()

X,(2) Y12 X5(2) Yy(2)  Xy(2) Yy (2)
(@)
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Cascade Realization cont'd

m We can write

Yi(z) = Hi(2)X1(z) = Hi(2)X(z2)

X(2) H,(2) Hy2) -~ Hy@d ——oy(y)

X,(2) Y@ X K@ Xy© V@)
(a)
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Cascade Realization cont'd

m Therefore, the overall transfer function of a cascade
arrangement of filter sections is equal to the product of the
individual transfer functions, that is,

M
H(z) =[] Hi(2)
i=1
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Cascade Realization cont'd

m Therefore, the overall transfer function of a cascade
arrangement of filter sections is equal to the product of the
individual transfer functions, that is,

M
H(z) =] Hi(2)
i=1

m An Nth-order transfer function can be factorized into a
product of first- and second-order transfer functions of the
form

aoi + a1z ' + apiz 2
14 byjz7t + byjz—2

agi +ayiz”!
H,’(Z) = W and H,‘(Z) =
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Cascade Realization cont'd

m Therefore, the overall transfer function of a cascade
arrangement of filter sections is equal to the product of the
individual transfer functions, that is,

M
H(z) =] Hi(2)
i=1

m An Nth-order transfer function can be factorized into a
product of first- and second-order transfer functions of the
form

aoi + a1zt aop; + a1zt + apiz?

H,'(Z) = and H,'(Z) =

1+ byz7t 14 byjz7t + byjz—2

m Each of these low-order transfer functions can be realized
using any one of the methods described.
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Cascade Realization cont'd

m For example, an arbitrary transfer function can be realized by
using a cascade arrangement of canonic sections as shown.

X(2) H(z) Hy(2) e Hy@) o y(y)

X,(2) Y1) X2 @) Xy V()
(a)

x’(nT) o o )rl.(;zT)
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Parallel Realization

m Another realization comprising first- and second-order filter
sections is based on the parallel configuration shown.

X(2) Yi(2)
! H\(2) u

X@) 2O e 412(”_)69_»_0 ¥()

.

Xy(z Yy (@)
e Hy(2) v
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Parallel Realization cont'd

m We note that all the parallel sections have a common input,
e, Xi(z) = Xo(z) =+ = Xum(z) = X(2).
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Parallel Realization cont'd

m We note that all the parallel sections have a common input,

ie., X1(z) = Xao(2) = -+ = Xu(z) = X(2).
m Hence
V() = %le) + o) o Vi)

= Hi(z)X1(2) + H2(Z)X2( )+ + Hu(z)Xm(2)
= Hi(2)X(2) + Ha(z )X( )+ --'+HM(Z)X(Z)
= [Hi(2) + Ha(2) + - -- + Hu(2)]1X(2)
= H(2)X(2)

where "

H(z) =) Hi(2)
i=1

Frame # 27 Slide # 42 A. Antoniou Digital Filters — Secs. 9.2.3-9.2.7



Obtain a parallel realization of the transfer function

10z* — 3.723 — 1.282%2 4+ 0.99~
(22 —z+0.34)(2%2 + 0.9z + 0.2)

H(z) =

using canonic sections.
Solution The transfer function can be expressed as

10z* — 3.723 — 1.2822 + 0.99z
(z = p1)(z = p2)(z — p3)(z — p4)

H(z) =
where

p1,p2 = 0.5F 0.3
ps = —0.4
P4 = —-0.5
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Example cont'd

If we expand H(z)/z into partial fractions, we get

H(Z) Rl R2 R3 R4

7  7-05+j03 7-05-j03 7104 2105

where
Ri=1 R =1, R3=3, R;=5
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If we expand H(z)/z into partial fractions, we get

H(Z) Rl R2 R3 R4
= - + - + +
z z—05+,03 z-05-403 z+04 =z405
where
Ri=1 R =1, R3=3, R;=5
Thus
H(z) = z z 3z 5z

= 2 05+/03 7-05-j03 2104 7405
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z n z + 3z n bz
z—054+03 z—-05-403 =z+4+04 =z+05

H(z) =

Combining the first two and the last two partial fractions into
second-order transfer functions, we get

H(z) = H(z) + Ha(2)
where

2—z1 8+35z71

M(z)= T oma—2 ™ M) =100, 002
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z n z + 3z n bz
z—054+03 z—-05-403 =z+4+04 =z+05

H(z) =

Combining the first two and the last two partial fractions into
second-order transfer functions, we get

H(z) = Hi(z) + Ha(2)

where

2—z1 8+35z71

M(z)= T oma—2 ™ M) =100, 002

Using canonic structures for the two second-order transfer functions, the
structure on the next slide is readily obtained.
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Example cont'd
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Transpose

m Given a signal flow graph with inputs j =1,2, ..., J and
outputs k =1, 2, ..., K, a corresponding signal flow graph
can be derived by reversing the direction in each and every
branch such that the J input nodes become output nodes and
the K output nodes become input nodes.

IR
T T
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Transpose

m Given a signal flow graph with inputs j =1,2, ..., J and
outputs k =1, 2, ..., K, a corresponding signal flow graph
can be derived by reversing the direction in each and every
branch such that the J input nodes become output nodes and
the K output nodes become input nodes.

m The signal flow graph so derived is said to be the transpose of
the original signal flow graph.

1 2 J
Signal flow graph Transpose

T T T

Fo——o0 —
=0 N
>——o
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Transpose Cont'd

m If a signal flow graph and its transpose are characterized by
transfer functions Hj(z) and Hj(z), respectively, then

Hi(z) = Hyi(2)
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Transpose Cont'd

m If a signal flow graph and its transpose are characterized by
transfer functions Hj(z) and Hj(z), respectively, then

Hi(z) = Hyi(2)

m |n effect, given a digital-filter structure a corresponding
transpose structure can be obtained that has the same
transfer function.
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Transpose Cont'd

m If a signal flow graph and its transpose are characterized by
transfer functions Hj(z) and Hj(z), respectively, then

Hik(z) = Hyj(2)

m |n effect, given a digital-filter structure a corresponding
transpose structure can be obtained that has the same
transfer function.

m Sometimes, the derived transpose structure has improved
features relative to the original structure.
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Example
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Example cont'd
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Example cont'd

ag
, 1 ! .

b,
(©)

5

X(n)
a aj ag
DO —[—@O—F—

—bs —by

(d)
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This slide concludes the presentation.
Thank you for your attention.
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