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Introduction

There are two classical methods for the design of nonrecursive
filters, as follows:

By using the Fourier series in conjunction with a class of
functions known as window functions.

The method is referred to as the Fourier series method or as
the window method.

By using a multivariable optimization method known as the
weighted-Chebyshev method .

This presentation deals with the Fourier-series method.

The weighted-Chebyshev method is described in another
presentation. (See Chap. 15.)

Frame # 2 Slide # 2 A. Antoniou Digital Filters – Secs. 10.3, 10.4



Introduction

There are two classical methods for the design of nonrecursive
filters, as follows:

By using the Fourier series in conjunction with a class of
functions known as window functions.

The method is referred to as the Fourier series method or as
the window method.

By using a multivariable optimization method known as the
weighted-Chebyshev method .

This presentation deals with the Fourier-series method.

The weighted-Chebyshev method is described in another
presentation. (See Chap. 15.)

Frame # 2 Slide # 3 A. Antoniou Digital Filters – Secs. 10.3, 10.4



Introduction

There are two classical methods for the design of nonrecursive
filters, as follows:

By using the Fourier series in conjunction with a class of
functions known as window functions.

The method is referred to as the Fourier series method or as
the window method.

By using a multivariable optimization method known as the
weighted-Chebyshev method .

This presentation deals with the Fourier-series method.

The weighted-Chebyshev method is described in another
presentation. (See Chap. 15.)

Frame # 2 Slide # 4 A. Antoniou Digital Filters – Secs. 10.3, 10.4



Introduction

There are two classical methods for the design of nonrecursive
filters, as follows:

By using the Fourier series in conjunction with a class of
functions known as window functions.

The method is referred to as the Fourier series method or as
the window method.

By using a multivariable optimization method known as the
weighted-Chebyshev method .

This presentation deals with the Fourier-series method.

The weighted-Chebyshev method is described in another
presentation. (See Chap. 15.)

Frame # 2 Slide # 5 A. Antoniou Digital Filters – Secs. 10.3, 10.4



Fourier Series Method

A fundamental property of digital filters in general is that they
have a periodic frequency response with period equal to the
sampling frequency ωs , i.e.,

H(e j(ω+kωs)T ) = H(e jωT )

Therefore, an arbitrary desired frequency response, H(e jωT ),
can be represented by a Fourier series as

H(e jωT ) =
∞∑

n=−∞
h(nT )e−jωnT

where h(nT ) =
1

ωs

∫ ωs/2

−ωs/2
H(e jωT )e jωnT dω

are the Fourier series coefficients.
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Fourier Series Method Cont’d

· · ·
H(e jωT ) =

∞∑
n=−∞

h(nT )e−jωnT

If we let e jωT = z , we get

H(z) =
∞∑

n=−∞
h(nT )z−n

This is the transfer function of a nonrecursive filter with
impulse response h(nT ).

Frame # 4 Slide # 8 A. Antoniou Digital Filters – Secs. 10.3, 10.4



Fourier Series Method Cont’d

· · ·
H(e jωT ) =

∞∑
n=−∞

h(nT )e−jωnT

If we let e jωT = z , we get

H(z) =
∞∑

n=−∞
h(nT )z−n

This is the transfer function of a nonrecursive filter with
impulse response h(nT ).

Frame # 4 Slide # 9 A. Antoniou Digital Filters – Secs. 10.3, 10.4



Fourier Series Method Cont’d

Since the Fourier series coefficients are defined over the range
−∞ < n <∞, two problems are associated with the Fourier
series method:

– The nonrecursive filter obtained is of infinite length.

– The filter is noncausal because the impulse response is nonzero
for negative time.
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Fourier Series Method Cont’d

A finite filter length can be achieved by truncating the
impulse response such that

h(nT ) = 0 for |n| > M

where M = (N − 1)/2.

On the other hand, a causal filter can be obtained by delaying
the impulse response by a period MT seconds or by M
sampling periods.
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Fourier Series Method Cont’d

Since delaying the impulse response by M sampling periods amounts
to multiplying the transfer function by z−M , the transfer function of
the causal filter assumes the form

H ′(z) = z−M
M∑

n=−M

h(nT )z−n

The frequency response of the causal filter is obtained by letting
z = e jωT in the transfer function, i.e.,

H ′(e jωT ) = e−jMωT
M∑

n=−M

h(nT )e−jnωT

and since |e−jMωT | = 1, delaying the impulse response by M
sampling periods does not change the amplitude response.
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Example

Design a lowpass filter with a desired frequency response

H(e jωT ) ≈

{
1 for |ω| ≤ ωc

0 for ωc < |ω| ≤ ωs/2

where ωs is the sampling frequency.

Solution The Fourier series gives the impulse response of the noncausal
filter as

h(nT ) =
1

ωs

∫ ωc

−ωc

e jωnT dω =
1

nπ

(e jωcnT − e−jωcnT )

2j
=

1

nπ
sinωcnT

=


2ωc

ωs
for n = 0

1
nπ sinωcnT otherwise

(A)

Truncating and delaying the impulse response by M sampling periods
immediately yields the required design.
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Example Cont’d
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Fourier Series Method Cont’d

The amplitude response of the filter exhibits oscillations in the
passband as well as the stopband, which are known as Gibbs’
oscillations.

They are caused by the truncation of the Fourier series.

As the filter length is increased, the frequency of the oscillations
increases but the amplitude stays constant.

In other words, we do not seem to be able to reduce the passband
and stopband errors below a certain limit by increasing the filter
length.

Therefore, the filters that can be designed with the Fourier series
method are of little practical usefulness.
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Fourier Series Method Cont’d

The standard technique for the reduction of Gibbs’ oscillations is to
truncate the infinite-duration impulse response, h(nT ), through the
use of a discrete-time window function w(nT ).

If we let
hw (nT ) = w(nT )h(nT )

then from the complex-convolution theorem (see Chap. 4) a
modified transfer function can be obtained as

Hw (z) = Z[w(nT )h(nT )]

=
1

2πj

∮
Γ

H(v)W
( z
v

)
v−1 dv

where H(z) is the original transfer function and W (z) is the z
transform of the window function.
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Fourier Series Method Cont’d

Evaluating Hw (z) on the unit circle z = e jωT gives the
frequency response of the modified filter as

Hw (e jωT ) =
T

2π

∫ 2π/T

0
H(e j$T )W (e j(ω−$)T ) d$ (B)

W (e jωT ) is the frequency spectrum of the window function
and the integral at the right-hand side is a convolution
integral.
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Window Functions

Frequency spectrum of a typical window:

0

ω, rad/s

W(e
jωT

)

AML

Main-lobe width

Amax

ωs/2−ωs/2
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Window Functions Cont’d

Windows are characterized by their main-lobe width, BML,
which is the bandwidth between the first negative and the
first positive zero crossings, and by their ripple ratio, r, which
is defined as

r = 100
Amax

AML
% or R = 20 log

Amax

AML
dB

where Amax and AML are the maximum side-lobe and
main-lobe amplitudes, respectively.

The main-lobe width and ripple ratio should be as low as
possible, i.e., the spectral energy of the window should be
concentrated as far as possible in the main lobe and the
energy in the side lobes should be as low as possible.
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Window Functions Cont’d

The way by which Gibbs’ oscillations can be controlled by using a
window is illustrated in the next few slides which are based on
Eq. (B), i.e.,

Hw (e jωT ) =
T

2π

∫ 2π/T

0

H(e j$T )W (e j(ω−$)T ) d$ (B)

Let us consider the application of a generic window in the design of
a lowpass filter, assuming that the area under the curve in the
frequency spectrum of the window is 2π/T .

A window area of 2π/T will ensure that the passband gain of the
modified filter will be of order unity if the passband gain of the
original filter is of order unity because the area of the window would
cancel the scaling constant T/2π in Eq. (B).
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Window Functions Cont’d

1

−ωc

H(e
jωT
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)
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ω
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Frequency response of ideal lowpass filter

Frequency spectrum of window
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Window Functions Cont’d

1

−ωc

̟

ωs

ωs/2

ωs/2

ωs/2

̟

ωs

ωs

ω

H
w

(e
jωT

) 

−ωc
ωc

H(e
j̟T

) 

ω

W(e
j(ω−̟)T

)

ωc

Frame # 17 Slide # 34 A. Antoniou Digital Filters – Secs. 10.3, 10.4



Window Functions Cont’d
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Window Functions Cont’d
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Window Functions Cont’d

From the illustrations, we conclude that

the steepness of the transition characteristic of the filter
obtained depends on the main-lobe width of the window, and

the amplitudes of the passband and stopband ripples depend
on the ripple ratio of the window.
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Window Functions Cont’d

A variety of window functions have been described in the
literature in recent years:

– Rectangular

– von Hann

– Hamming

– Blackman

– Dolph-Chebyshev
– Kaiser

– Ultraspherical window

The first four are fixed windows whereas the last three are
adjustable and are often referred to as parametric.
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Rectangular Window

The rectangular window of length N is given by

wR(nT ) =

{
1 for −[(N − 1)T ]/2 ≤ nT ≤ [(N − 1)T ]/2

0 otherwise

Multiplying a discrete-time signal that is defined over the
range −∞ < nT <∞ by the rectangular window will simply
cause the signal to become zero over the ranges

−∞ < nT < −[(N − 1)T ]/2 and [(N − 1)T ]/2 < n <∞

i.e., the window will truncate the discrete-time signal.
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Rectangular Window Cont’d

The most important property of a window function is its
spectrum.

This can be determined by finding the window’s z transform
and then evaluating it on the unit circle of the z plane, i.e., by
letting z = e jωT .

From the definition of the z transform

WR(z) =

(N−1)/2∑
n=−(N−1)/2

z−n

The above sum is a geometric series and, therefore, a
closed-form expression can be readily obtained as

WR(z) =
z(N−1)/2 − z−(N+1)/2

1− z−1
=

zN/2 − z−N/2

z1/2 − z−1/2
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Rectangular Window Cont’d
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Rectangular Window Cont’d

· · ·
WR(z) =

zN/2 − z−N/2

z1/2 − z−1/2

If we now let z = e jωT , we get

WR(e jωT ) =
e jωNT/2 − e−jωNT/2

e jωT/2 − e−jωT/2
=

sin(ωNT/2)

sin(ωT/2)
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von Hann and Hamming Windows

The von Hann and Hamming Windows are given by

wH(nT ) =

α + (1− α) cos
2πn

N − 1
for |n| ≤ N − 1

2
0 otherwise

where α = 0.5 in the von Hann window and α = 0.54 in the
Hamming window.

The small increase in the value of α from 0.5 to 0.54 in the
Hamming window has a beneficial effect: It reduces the ripple
ratio by about 50 percent.
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von Hann and Hamming Windows Cont’d

By applying the z transform, the spectrums of the von Hann
and Hamming Windows can be derived from the spectrum of
the rectangular window as

WH(e jωT ) = αWR(e jωT ) +
1− α

2
WR

(
e j[ωT−2π/(N−1)]

)
+

1− α
2

WR

(
e j[ωT+2π/(N−1)]

)
=
α sin(ωNT/2)

sin(ωT/2)
+

1− α
2
· sin[ωNT/2− Nπ/(N − 1)]

sin[ωT/2− π/(N − 1)]

+
1− α

2
· sin[ωNT/2 + Nπ/(N − 1)]

sin[ωT/2 + π/(N − 1)]

The second and third terms introduce ripples which reduce
the oscillations in the spectrum of the rectangular window.
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von Hann and Hamming Windows Cont’d

By applying the z transform, the spectrums of the von Hann
and Hamming Windows can be derived from the spectrum of
the rectangular window as

WH(e jωT ) = αWR(e jωT ) +
1− α

2
WR

(
e j[ωT−2π/(N−1)]

)
+

1− α
2

WR

(
e j[ωT+2π/(N−1)]

)
=
α sin(ωNT/2)

sin(ωT/2)
+

1− α
2
· sin[ωNT/2− Nπ/(N − 1)]

sin[ωT/2− π/(N − 1)]

+
1− α

2
· sin[ωNT/2 + Nπ/(N − 1)]

sin[ωT/2 + π/(N − 1)]

The second and third terms introduce ripples which reduce
the oscillations in the spectrum of the rectangular window.

Frame # 26 Slide # 51 A. Antoniou Digital Filters – Secs. 10.3, 10.4



von Hann and Hamming Windows Cont’d

2.0

4.0

6.0

0

−3.0

−2.0 −1.0 1.0 2.0

3.0

ω, rad/s 

W
H

(e 
jωT

) 

2.0

4.0

6.0

First term

Second termThird term

Frame # 27 Slide # 52 A. Antoniou Digital Filters – Secs. 10.3, 10.4



Blackman Window

The Blackman window is as follows:

wB(nT ) =

0.42 + 0.5 cos
2πn

N − 1
+ 0.08 cos

4πn

N − 1
for |n| ≤ N − 1

2
0 otherwise

The additional cosine term helps to reduce the ripple ratio relative
to that of the Hamming window.
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Blackman Window

The Blackman window is as follows:

wB(nT ) =

0.42 + 0.5 cos
2πn

N − 1
+ 0.08 cos

4πn

N − 1
for |n| ≤ N − 1

2
0 otherwise

The additional cosine term helps to reduce the ripple ratio relative
to that of the Hamming window.
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Blackman Window Cont’d

Using the same method as before, the spectrum of the Blackman
window can be obtained as

WB(e jωT ) = 0.42
sin(ωNT/2)

sin(ωT/2)
+ 0.25

sin[ωNT/2− Nπ/(N − 1)]

sin[ωT/2− π/(N − 1)]

+0.25
sin[ωNT/2 + Nπ/(N − 1)]

sin[ωT/2 + π/(N − 1)]

+0.04
sin[ωNT/2− Nπ/(N − 1)]

sin[ωT/2− π/(N − 1)]

+0.04
sin[ωNT/2 + Nπ/(N − 1)]

sin[ωT/2 + π/(N − 1)]
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Comparison of Fixed Windows

Ripple ratio, %

Window Main-lobe width N=11 N=21 N=101

Rectangular 2ωs
N 22.34 21.89 21.70

von Hann 4ωs
N 2.62 2.67 2.67

Hamming 4ωs
N 1.47 0.93 0.74

Blackman 6ωs
N 0.08 0.12 0.12
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Example

Design a lowpass filter with a desired frequency response

H(e jωT ) ≈

{
1 for |ω| ≤ ωc

0 for ωc < |ω| ≤ ωs/2

where ωs is the sampling frequency using the von Hann, Hamming, and
Blackman windows.

Solution The impulse response is h(nT ) = 1
nπ sinωcnT

If we multiply h(nT ) by the appropriate window function, we obtain

H ′w (z) = z−(N−1)/2

(N−1)/2∑
n=0

a′n
2

(zn + z−n)

where a′0 = w(0)h(0) and a′n = 2w(nT )h(nT )
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Example Cont’d

−100 

−80 

−60 

−40 

0 

G
a

in
, 

d
B

von HannHamming

Blackman

0.1 

−0.1 

1.0 2.0 3.0 4.0 5.0 0 

ω, rad/s

 

Frame # 32 Slide # 58 A. Antoniou Digital Filters – Secs. 10.3, 10.4



Dolph-Chebyshev Window

The Dolph-Chebyshev window is given by

wDC (nT ) =
1

N

1

r
+ 2

(N−1)/2∑
i=1

TN−1

(
x0 cos

iπ

N

)
cos

2nπi

N


for n = 0, 1, 2, . . . , (N − 1)/2 where r is the required ripple ratio as
a fraction,

x0 = cosh

(
1

N − 1
cosh−1 1

r

)
and

Tk(x) =

{
cos(k cos−1 x) for |x | ≤ 1

cosh(k cosh−1 x) for |x | > 1

is the kth-order Chebyshev polynomial.
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Dolph-Chebyshev Window Cont’d

The Dolph-Chebyshev window has three properties of interest:

– The ripple ratio can be adjusted to suit the application.

– With N fixed, the main-lobe width is the smallest that can be
achieved for a given ripple ratio.

– All the side lobes have the same amplitude.

In other words, the amplitude spectrum is equiripple.
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Dolph-Chebyshev Window Cont’d

The Dolph-Chebyshev window has three properties of interest:

– The ripple ratio can be adjusted to suit the application.

– With N fixed, the main-lobe width is the smallest that can be
achieved for a given ripple ratio.

– All the side lobes have the same amplitude.

In other words, the amplitude spectrum is equiripple.

Frame # 34 Slide # 61 A. Antoniou Digital Filters – Secs. 10.3, 10.4



Dolph-Chebyshev Window Cont’d

The Dolph-Chebyshev window has three properties of interest:

– The ripple ratio can be adjusted to suit the application.

– With N fixed, the main-lobe width is the smallest that can be
achieved for a given ripple ratio.

– All the side lobes have the same amplitude.

In other words, the amplitude spectrum is equiripple.
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Dolph-Chebyshev Window Cont’d

A close-form formula for the frequency spectrum of the
Dolph-Chebyshev Window is difficult to obtain.

However, a formula in the form of a finite summation can be
easily obtained by evaluating its z transform on the unit circle
of the z plane, as follows:

WDC (e jωT ) = wDC (0) + 2
M∑
n=1

wDC (nT ) cosωnT
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Dolph-Chebyshev Window Cont’d
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Kaiser Window

The Kaiser window function is given by

wK (nT ) =


I0(β)

I0(α)
for |n| ≤ (N − 1)/2

0 otherwise

where β = α

√
1−

(
2n

N − 1

)2

, I0(x) = 1 +
∞∑
k=1

[
1

k!

(x
2

)k]2

α is an independent parameter, and I0(x) is a zeroth-order modified
Bessel function of the first kind.

As for the Dolph-Chebyshev window, the frequency spectrum is
given by

WK (e jωT ) = wK (0) + 2

(N−1)/2∑
n=1

wK (nT ) cosωnT
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Kaiser Window

The Kaiser window function is given by

wK (nT ) =


I0(β)

I0(α)
for |n| ≤ (N − 1)/2

0 otherwise

where β = α

√
1−

(
2n

N − 1

)2

, I0(x) = 1 +
∞∑
k=1

[
1

k!

(x
2

)k]2

α is an independent parameter, and I0(x) is a zeroth-order modified
Bessel function of the first kind.

As for the Dolph-Chebyshev window, the frequency spectrum is
given by

WK (e jωT ) = wK (0) + 2

(N−1)/2∑
n=1

wK (nT ) cosωnT
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Kaiser Window Cont’d
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Kaiser Window Cont’d

Main-lobe width versus α:
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Kaiser Window Cont’d

As will be shown, a filter-design method is available, also
proposed by Kaiser, that can be used to design nonrecursive
filters that would satisfy arbitrary prescribed specifications.

In this method, the value of α and the filter length, N, that
would yield the required design are estimated using certain
empirical formulas.

Kaiser’s method can be used to design lowpass (LP), highpass
(HP), bandpass (BP), and bandstop (BS) filters.
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Kaiser Window Cont’d

As will be shown, a filter-design method is available, also
proposed by Kaiser, that can be used to design nonrecursive
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In this method, the value of α and the filter length, N, that
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empirical formulas.

Kaiser’s method can be used to design lowpass (LP), highpass
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Kaiser Window Cont’d

As will be shown, a filter-design method is available, also
proposed by Kaiser, that can be used to design nonrecursive
filters that would satisfy arbitrary prescribed specifications.

In this method, the value of α and the filter length, N, that
would yield the required design are estimated using certain
empirical formulas.

Kaiser’s method can be used to design lowpass (LP), highpass
(HP), bandpass (BP), and bandstop (BS) filters.
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Design of Nonrecursive Lowpass Filters

A nonrecursive LP filter that would satisfy the specifications shown
can be designed by using the procedure described in the next three
slides:

G
a

in

ω

δ

1+δ

1−δ

ωcωp ωa

1.0

ωs/2

Ap
∼

Aa

∼
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Design of Nonrecursive Lowpass Filters Cont’d

1. Determine the impulse response h(nT ) using the Fourier series
assuming an idealized frequency response

H(e jωT ) =

{
1 for |ω| ≤ ωc

0 for ωc < |ω| ≤ ωs/2
where ωc = 1

2 (ωp + ωa)

This is given by

h(nT ) =
1

ωs

∫ ωc

−ωc

e jωnT dω =
1

nπ

(e jωcnT − e−jωcnT )

2j
=

1

nπ
sinωcnT

=


2ωc

ωs
for n = 0

1
nπ sinωcnT otherwise

Frame # 42 Slide # 73 A. Antoniou Digital Filters – Secs. 10.3, 10.4



Design of Nonrecursive Lowpass Filters Cont’d

2. Choose δ such that the actual passband ripple, Ap, is equal to
or less than specified passband ripple, Ãp, and the actual
minimum stopband attenuation, Aa, is equal or greater than
the specified minimum stopband attenuation, Ãa.

A suitable value is

δ = min(δ̃p, δ̃a)

where δ̃p =
100.05Ãp − 1

100.05Ãp + 1
and δ̃a = 10−0.05Ãa
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Design of Nonrecursive Lowpass Filters Cont’d

3. With the required δ defined, the actual stopband attenuation Aa

can be calculated as
Aa = −20 log δ

4. Choose parameter α as

α =


0 for Aa ≤ 21

0.5842(Aa − 21)0.4 + 0.07886(Aa − 21) for 21 < Aa ≤ 50

0.1102(Aa − 8.7) forAa > 50
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Design of Nonrecursive Lowpass Filters Cont’d

3. With the required δ defined, the actual stopband attenuation Aa

can be calculated as
Aa = −20 log δ

4. Choose parameter α as

α =


0 for Aa ≤ 21

0.5842(Aa − 21)0.4 + 0.07886(Aa − 21) for 21 < Aa ≤ 50

0.1102(Aa − 8.7) forAa > 50
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Design of Nonrecursive Lowpass Filters Cont’d

5. Choose parameter D as

D =

0.9222 for Aa ≤ 21
Aa − 7.95

14.36
for Aa > 21

Then select the lowest odd value of N that would satisfy the
inequality

N ≥ ωsD

Bt
+ 1 where Bt = ωa − ωp
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Design of Nonrecursive Lowpass Filters Cont’d

6. Form wK (nT ) using the following equations:

wK (nT ) =


I0(β)

I0(α)
for |n| ≤ (N − 1)/2

0 otherwise

where

β = α

√
1−

(
2n

N − 1

)2

, I0(x) = 1 +
∞∑
k=1

[
1

k!

(x
2

)k]2

7. Form

H ′w (z) = z−(N−1)/2Hw (z) where Hw (z) = Z[wK (nT )h(nT )]
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Design of Nonrecursive Lowpass Filters Cont’d

6. Form wK (nT ) using the following equations:

wK (nT ) =


I0(β)

I0(α)
for |n| ≤ (N − 1)/2

0 otherwise

where

β = α

√
1−

(
2n

N − 1

)2

, I0(x) = 1 +
∞∑
k=1

[
1

k!

(x
2

)k]2

7. Form

H ′w (z) = z−(N−1)/2Hw (z) where Hw (z) = Z[wK (nT )h(nT )]
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Design of Nonrecursive Highpass Filters

The method presented can also be applied for the design of
nonrecursive HP filters.

Consider the case where a HP filter is required that would
satisfy the following specifications:

– Passband ripple ≤ Ãp

– Minimum stopband attenuation ≥ Ãa

– Passband edge ωp

– Stopband edge ωa

– Sampling frequency ωs
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Design of Nonrecursive Highpass Filters

The method presented can also be applied for the design of
nonrecursive HP filters.

Consider the case where a HP filter is required that would
satisfy the following specifications:

– Passband ripple ≤ Ãp

– Minimum stopband attenuation ≥ Ãa

– Passband edge ωp

– Stopband edge ωa

– Sampling frequency ωs

Frame # 47 Slide # 81 A. Antoniou Digital Filters – Secs. 10.3, 10.4



Design of Nonrecursive Highpass Filters Cont’d

ω
ωc ωpωa

G
a
in

δ

1+δ

1−δ

1.0

ωs

2
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Design of Nonrecursive Highpass Filters Cont’d

The transition width and idealized frequency response in Step
1 of the design procedure can be taken as

Bt = ωp−ωa and H(e jωT ) =


1 for −ωs/2 ≤ ω ≤ −ωc

1 for ωc ≤ ω ≤ ωs/2

0 otherwise

respectively.

Applying the Fourier series, the impulse response of the ideal
filter can be obtained as

h(nT ) =

1− 2ωc
ωs

for n = 0

− 1
nπ sinωcnT otherwise
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Design of Nonrecursive Highpass Filters Cont’d

The transition width and idealized frequency response in Step
1 of the design procedure can be taken as

Bt = ωp−ωa and H(e jωT ) =


1 for −ωs/2 ≤ ω ≤ −ωc

1 for ωc ≤ ω ≤ ωs/2

0 otherwise

respectively.

Applying the Fourier series, the impulse response of the ideal
filter can be obtained as

h(nT ) =

1− 2ωc
ωs

for n = 0

− 1
nπ sinωcnT otherwise
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Design of Nonrecursive Bandpass Filters

The design method presented can be easily extended to
nonrecursive BP and BS filters.

Consider the design of a BP filter that would satisfy the
following specifications:

– Passband ripple ≤ Ãp

– Minimum stopband attenuation ≥ Ãa

– Lower stopband edge ωa1

– Lower passband edge ωp1

– Upper passband edge ωp2

– Upper stopband edge ωa2

– Sampling frequency ωs
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Design of Nonrecursive Bandpass Filters

The design method presented can be easily extended to
nonrecursive BP and BS filters.

Consider the design of a BP filter that would satisfy the
following specifications:

– Passband ripple ≤ Ãp

– Minimum stopband attenuation ≥ Ãa

– Lower stopband edge ωa1

– Lower passband edge ωp1

– Upper passband edge ωp2

– Upper stopband edge ωa2

– Sampling frequency ωs
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Design of Nonrecursive Bandpass Filters Cont’d

G
a

in

ω

δ

1+δ

1−δ

ωc1 ωc2

ωp1 ωp2
ωa1

ωa2

1.0

ωs

2

Ap
∼

Aa

∼
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Design of Nonrecursive Bandpass Filters Cont’d

The only differences in the design of BP filters are to

use the more critical of the two transition widths for the
design, and

then use the idealized frequency response of a BP filter for the
determination of the initial impulse response.
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Design of Nonrecursive Bandpass Filters Cont’d

The only differences in the design of BP filters are to

use the more critical of the two transition widths for the
design, and

then use the idealized frequency response of a BP filter for the
determination of the initial impulse response.
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Design of Nonrecursive Bandpass Filters Cont’d

The more critical transition width is

Bt = min[(ωp1 − ωa1), (ωa2 − ωp2)]

and hence the idealized frequency response for a BP filter is
deduced as

H(e jωT ) =


1 for −ωc2 ≤ ω ≤ −ωc1

1 for ωc1 ≤ ω ≤ ωc2

0 otherwise

where ωc1 = ωp1 −
Bt

2
, ωc2 = ωp2 +

Bt

2
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Design of Nonrecursive Bandpass Filters Cont’d

· · ·

H(e jωT ) =


1 for −ωc2 ≤ ω ≤ −ωc1

1 for ωc1 ≤ ω ≤ ωc2

0 otherwise

Applying the Fourier series to the idealized frequency
response, we get

h(nT ) =


2
ωs

(ωc2 − ωc1) for n = 0

1
nπ (sinωc2nT − sinωc1nT ) otherwise
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Design of Nonrecursive Bandstop Filters

The design of BS filters is similar to that of BP filters.

We use the more critical of the two transition widths for the
design (as before),

then we use the idealized frequency response of a BS filter for
the determination of the initial impulse response.
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Design of Nonrecursive Bandstop Filters
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design (as before),

then we use the idealized frequency response of a BS filter for
the determination of the initial impulse response.

Frame # 55 Slide # 93 A. Antoniou Digital Filters – Secs. 10.3, 10.4



Design of Nonrecursive Bandstop Filters Cont’d

Consider the design of a BS filter that would satisfy the
following specifications:

– Passband ripple ≤ Ãp

– Minimum stopband attenuation ≥ Ãa

– Lower passband edge ωp1

– Lower stopband edge ωa1

– Upper stopband edge ωa2

– Upper passband edge ωp2

– Sampling frequency ωs

Frame # 56 Slide # 94 A. Antoniou Digital Filters – Secs. 10.3, 10.4



Design of Nonrecursive Bandstop Filters Cont’d
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Design of Nonrecursive Bandstop Filters Cont’d

From the specifications, we can write

Bt = min [(ωa1 − ωp1), (ωp2 − ωa2)]

H(e jωT ) =


1 for 0 ≤ |ω| ≤ ωc1

0 for ωc1 < |ω| < ωc2

1 for ωc2 ≤ |ω| ≤ ωs/2

where

ωc1 = ωp1 +
Bt

2
, ωc2 = ωp2 −

Bt

2
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Design of Nonrecursive Bandstop Filters Cont’d

· · ·

H(e jωT ) =


1 for 0 ≤ |ω| ≤ ωc1

0 for ωc1 < |ω| < ωc2

1 for ωc2 ≤ |ω| ≤ ωs/2

Using the Fourier series, the impulse response of the ideal
bandstop filter can be obtained as

h(nT ) =


1 +

2(ωc1 − ωc2)

ωs
for n = 0

1

nπ
(sinωc1nT − sinωc2nT ) otherwise
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Example

Design a nonrecursive BP filter satisfying the following
specifications:

– Minimum attenuation for 0 ≤ ω ≤ 200: 45 dB

– Maximum passband ripple for 400 < ω < 600: 0.2 dB

– Minimum attenuation for 700 ≤ ω ≤ 1000: 45 dB

– Sampling frequency: 2000 rad/s
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Example Cont’d

The idealized impulse response is obtained as

h(nT ) =


2
ωs

(ωc2 − ωc1) for n = 0

1
nπ (sinωc2nT − sinωc1nT ) otherwise

The application of the design procedure described will give

α = 3.9754, D = 2.580, and N = 53
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Example Cont’d
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Design of Even-Length Filters

The application of the Fourier series method for the design of an
LP, HP, BP, or BS filter will yield a noncausal filter with an impulse
response defined at

nT = . . . ,−(N − 1)T/2, . . . − T , 0, T , . . . , (N − 1)T/2

The impulse response turns out to be symmetrical about nT = 0
and, furthermore, the length of the filter turns out to be odd.

nT = 5T nT = -5T 

nT 

Center of symmetry 

N = 11 

h(nT ) 
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Design of Even-Length Filters Cont’d

We then proceed to obtain a causal filter by delaying the
impulse response by (N − 1)/2 sampling periods.

For a filter of length 11, we would delay the impulse response
by

N − 1

2
= 5 samples
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Design of Even-Length Filters Cont’d

The Fourier series method as described cannot be used to
design filters of even length.

However, through the use of a simple algebraic technique as
detailed in the next three slides, even-length filters can be
easily designed.

Frame # 65 Slide # 103 A. Antoniou Digital Filters – Secs. 10.3, 10.4



Design of Even-Length Filters Cont’d

The steps involved are as follows:

1. Assuming that N is the required even filter length, design a
filter of length N + 1 using the Fourier series method.

2. Convert the impulse response, h(nT ), of the filter into a
continuous-time function h(t) by letting nT = t.

3. Resample h(t) at t = ±(n − 0.5)T for n = 1, 2, . . . , N/2.

4. In the case of a real-time application, delay the impulse
response by (N − 1)T/2 s to get a causal filter.
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Design of Even-Length Filters Cont’d

nT = 5T nT = -5T 

nT 

Center of symmetry 

N+1 = 11 

h(nT ) 

nT = 5T nT = -5T 

nT 

Center of symmetry 

N+1 = 11 

nT = 4.5T nT = -4.5T 

nT 

Center of symmetry 

N = 10 

Step 2

Step 3

Step 1
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Design of Even-Length Filters Cont’d

To get a causal filter, we need to delay the impulse response
by

N − 1

2
e.g., 4.5, if N = 10

Delaying the impulse response by 4T is simple: we just use 4
unit delays.

Delaying the impulse response by 0.5T corresponds to half a
sampling period and a special device would be required, which
would increase the cost of the implementation.

For this reason, even-order nonrecursive filters are usually
avoided for real-time applications.
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Use of Ultraspherical Window

A more recent method for the design of nonrecursive filters
that parallels the method described is one based on the
ultraspherical window function proposed by Bergen and
Antoniou (see book Ref. [76]).

For certain specifications, this new approach tends to give
more efficient designs, i.e., the minimum filter length that will
achieve the required specifications is somewhat lower.
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Advantages of Fourier-Series Method

Closed-form method.

Arbitrary specifications can be achieved by using a method
proposed by Kaiser.

Easy to apply.

The design entails a relatively insignificant amount of
computation.
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Disadvantages of Fourier-Series Method

Designs are suboptimal, i.e., the filter order needed to satisfy
a given set of prescribed specifications is not the lowest, i.e.,
other methods are available that yield a lower filter order
(e.g., the weighted-Chebyshev method, see Chap. 15).

In a hardware implementation, higher filter order means more
unit delays, adders, and multipliers, which implies a more
expensive design.

In a software implementation, higher filter order means more
computations per sample, which implies a less efficient design.
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D-Filter

A DSP software package that incorporates the design
techniques described in this presentation is D-Filter.

For more information about D-Filter or to download a free
copy, click the following link:

http://ece.uvic.ca/∼dsp/Software-ne.html
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This slide concludes the presentation.

Thank you for your attention.
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