Chapter 10 DESIGN OF NONRECURSIVE FILTERS 10.6 Design Based on Numerical-Analysis Formulas

Copyright © 2018 Andreas Antoniou Victoria, BC, Canada Email: aantoniou@ieee.org

July 10, 2018

Frame # 1 Slide # 1

(1日) (1日) (1日) (1日)

In signal processing, a continuous-time signal often needs to be interpolated, extrapolated, differentiated at some instant t = t₁ or integrated between two distinct instants t₁ and t₂.

回下 くほと くほとう

- In signal processing, a continuous-time signal often needs to be interpolated, extrapolated, differentiated at some instant t = t₁ or integrated between two distinct instants t₁ and t₂.
- Such mathematical operations can be performed by using many classical numerical-analysis formulas.

- In signal processing, a continuous-time signal often needs to be interpolated, extrapolated, differentiated at some instant t = t₁ or integrated between two distinct instants t₁ and t₂.
- Such mathematical operations can be performed by using many classical numerical-analysis formulas.
- Formulas of this type can be readily derived from the Taylor series.

- In signal processing, a continuous-time signal often needs to be interpolated, extrapolated, differentiated at some instant t = t₁ or integrated between two distinct instants t₁ and t₂.
- Such mathematical operations can be performed by using many classical numerical-analysis formulas.
- Formulas of this type can be readily derived from the Taylor series.
- This presentation will show that numerical-analysis formulas can be used to design nonrecursive filters that can be used to perform interpolation, differentiation, and integration.

Interpolation Formulas

The most fundamental numerical analysis formulas are the formulas for *interpolation*.

イロン 不同 とくほど 不同 とう

臣

Interpolation Formulas

- The most fundamental numerical analysis formulas are the formulas for *interpolation*.
- ▶ The value of x(t) at t = nT + pT, where $0 \le p < 1$, is given by the *forward* Gregory-Newton interpolation formula as

$$x(nT + pT) = (1 + \Delta)^{p} x(nT)$$
$$= \left[1 + p\Delta + \frac{p(p-1)}{2!}\Delta^{2} + \cdots\right] x(nT)$$

where

$$\Delta x(nT) = x(nT + T) - x(nT)$$

is commonly referred to as the *forward* difference.

Frame # 3 Slide # 7

(周) (日) (日)

Interpolation Formulas Cont'd

Similarly, the *backward* Gregory-Newton interpolation formula gives

$$x(nT + pT) = (1 - \nabla)^{-p} x(nT)$$
$$= \left[1 + p\nabla + \frac{p(p+1)}{2!}\nabla^2 + \cdots\right] x(nT)$$

where

$$\nabla x(nT) = x(nT) - x(nT - T)$$

is known as the *backward difference*.

Frame # 4 Slide # 8

・ 回 ト ・ ヨ ト ・ ヨ ト

Э

Interpolation Formulas Cont'd

Another interpolation formula known as the *Stirling formula* assumes the form

$$\begin{aligned} x(nT + pT) &= \left[1 + \frac{p^2}{2!} \delta^2 + \frac{p^2(p^2 - 1)}{4!} \delta^4 + \cdots \right] x(nT) \\ &+ \frac{p}{2} \left[\delta x \left(nT - \frac{1}{2}T \right) + \delta x \left(nT + \frac{1}{2}T \right) \right] \\ &+ \frac{p(p^2 - 1)}{2(3!)} \left[\delta^3 x \left(nT - \frac{1}{2}T \right) + \delta^3 x \left(nT + \frac{1}{2}T \right) \right] \\ &+ \frac{p(p^2 - 1)(p^2 - 2^2)}{2(5!)} \left[\delta^5 x \left(nT - \frac{1}{2}T \right) + \delta^5 x \left(nT + \frac{1}{2}T \right) \right] \\ &+ \cdots \end{aligned}$$

where $\delta x (nT + \frac{1}{2}T) = x(nT + T) - x(nT)$

is known as the *central difference*.

Frame # 5 Slide # 9

イロト イヨト イヨト イヨト 三日

Interpolation Formulas Cont'd

The forward, backward, and central differences are linear operators. Hence higher-order differences can be readily obtained, e.g.,

$$\begin{split} \delta^{3}x(nT + \frac{1}{2}T) &= \delta^{2} \left[\delta x(nT + \frac{1}{2}T) \right] = \delta^{2} [x(nT + T) - x(nT)] \\ &= \delta [\delta x(nT + T) - \delta x(nT)] \\ &= \delta \left\{ x(nT + \frac{3}{2}T) - x(nT + \frac{1}{2}T) \\ &- \left[x(nT + \frac{1}{2}T) - x(nT - \frac{1}{2}T) \right] \right\} \\ &= \delta x(nT + \frac{3}{2}T) - 2\delta x(nT + \frac{1}{2}T) + \delta x(nT - \frac{1}{2}T) \\ &= \left[x(nT + 2T) - x(nT + T) \right] - 2[x(nT + T) - x(nT)] \\ &+ [x(nT) - x(nT - T)] \\ &= x(nT + 2T) - 3x(nT + T) + 3x(nT) - x(nT - T) \end{split}$$

(1日) (1日) (日)

Э

Differentiation Formulas

The first derivative of x(t) with respect to time at instant t = nT + pT can be expressed as

$$\frac{dx(t)}{dt}\Big|_{t=nT+pT} = \frac{dx(nT+pT)}{dp} \times \frac{dp}{dt}$$
$$= \frac{1}{T} \frac{dx(nT+pT)}{dp}$$

Frame # 7 Slide # 11

イロン イヨン イヨン イヨン

Differentiation Formulas

The first derivative of x(t) with respect to time at instant t = nT + pT can be expressed as

$$\frac{dx(t)}{dt}\Big|_{t=nT+pT} = \frac{dx(nT+pT)}{dp} \times \frac{dp}{dt}$$
$$= \frac{1}{T} \frac{dx(nT+pT)}{dp}$$

By differentiating each of the interpolation formulas considered with respect to p, corresponding differentiation formulas can be obtained.

(日本)(日本)(日本)

Integration Formulas

Integration formulas can be derived by writing

$$\int_{nT}^{t_2} x(t) \, dt = T \int_0^{p_2} x(nT + pT) \, dp$$

where

 $nT < t_2 \le nT + T$

and

$$t_2 = nT + Tp_2$$
 or $p_2 = \frac{t_2 - nT}{T}$

with $0 < p_2 \leq 1$.

Frame # 8 Slide # 13

イロト イヨト イヨト イヨト 三日

Nonrecursive filters that can perform *interpolation*, *differentiation*, or *integration* can be obtained by expressing one of the available numerical formulas for these operations in the form of a difference equation.

- Nonrecursive filters that can perform *interpolation*, *differentiation*, or *integration* can be obtained by expressing one of the available numerical formulas for these operations in the form of a difference equation.
- Let x(nT) and y(nT) be the input and output of a nonrecursive filter and assume that y(nT) is equal to the required function of x(t), i.e.,

$$y(nT) = f[x(t)]\Big|_{t=nT+pT}$$

Frame # 9 Slide # 15

• (1) • (

 For interpolation, differentiation, or integration, we would have

$$y(nT) = x(t)\Big|_{t=nT+pT}$$
$$y(nT) = \frac{dx(t)}{dt}\Big|_{t=nT+pT}$$

or

$$y(nT) = \int_{nT}^{nT+pT} x(t) dt$$

as appropriate.

(日) (日) (日)

By choosing an appropriate numerical formula for the operation of interest and then eliminating all the difference operators using their definitions, we can obtain a difference equation of the form

$$y(nT) = \sum_{i=-K}^{M} a_i x(nT - iT)$$

(周) (日) (日)

By choosing an appropriate numerical formula for the operation of interest and then eliminating all the difference operators using their definitions, we can obtain a difference equation of the form

$$y(nT) = \sum_{i=-K}^{M} a_i x(nT - iT)$$

Now by applying the z transform, a transfer function

$$H(z) = \sum_{n=-K}^{M} h(nT) z^{-n}$$

can be deduced.

Frame # 11 Slide # 18

イロン 不同 とうほう 不同 とう

크

Interpolation:

Frame # 13 Slide # 20

< ∃⇒

For the case of a forward- or central-difference formula, the digital filter obtained turns out to be noncausal.

・ 回 ト ・ ヨ ト ・ ヨ ト

- For the case of a forward- or central-difference formula, the digital filter obtained turns out to be noncausal.
- For real-time applications it is necessary to convert a noncausal into a causal design.

(周) (日) (日)

- For the case of a forward- or central-difference formula, the digital filter obtained turns out to be noncausal.
- For real-time applications it is necessary to convert a noncausal into a causal design.
- ► This is done by multiplying the transfer function by an appropriate negative power of *z*, which corresponds to delaying the impulse response of the filter to ensure that *h*(*n*T) = 0 for *n* < 0.</p>

同トイヨトイヨト

Example

A signal x(t) is sampled at a rate of 1/T Hz.
 Design a sixth-order differentiator with a time-domain response

$$y(nT) = \frac{dx(t)}{dt}\Big|_{t=nT}$$

Use the Stirling formula.

イロン 不同 とうほう 不同 とう

크

Solution From Stirling's formula for interpolation

$$y(nT) = \frac{dx(t)}{dt} \bigg|_{t=nT+pT} = \frac{1}{T} \frac{dx(nT+pT)}{dp} \bigg|_{p=0}$$

= $\frac{1}{2T} [\delta x (nT - \frac{1}{2}T) + \delta x (nT + \frac{1}{2}T)]$
 $- \frac{1}{12T} [\delta^3 x (nT - \frac{1}{2}T) + \delta^3 x (nT + \frac{1}{2}T)]$
 $+ \frac{1}{60T} [\delta^5 x (nT - \frac{1}{2}T) + \delta^5 x (nT + \frac{1}{2}T)] + \cdots$

・ロト ・回ト ・ヨト ・ヨト

Э

▶ From the definition of the central difference, we get

$$\delta x \left(nT - \frac{1}{2}T \right) + \delta x \left(nT + \frac{1}{2}T \right) = x (nT + T) - x (nT - T)$$

$$\delta^{3} x \left(nT - \frac{1}{2}T \right) + \delta^{3} x \left(nT + \frac{1}{2}T \right) = x (nT + 2T) - 2x (nT + T)$$

$$+ 2x (nT - T) - x (nT - 2T)$$

$$\delta^{5} x \left(nT - \frac{1}{2}T \right) + \delta^{5} x \left(nT + \frac{1}{2}T \right) = x (nT + 3T) - 4x (nT + 2T)$$

$$+ 5x (nT + T) - 5x (nT - T)$$

$$+ 4x (nT - 2T) - x (nT - 3T)$$

Э

Hence

$$y(nT) = \frac{1}{60T} [x(nT+3T) - 9x(nT+2T) + 45x(nT+T) - 45x(nT-T) + 9x(nT-2T) - x(nT-3T)]$$

and, therefore

$$H(z) = \frac{1}{60T}(z^3 - 9z^2 + 45z - 45z^{-1} + 9z^{-2} - z^{-3})$$

- Note that the differentiator has an antisymmetrical impulse response, i.e., it has a constant group delay, and it is also noncausal.
- A causal filter can be obtained by multiplying H(z) by z^{-3} .

- 同下 - 三下 - 三下

Frame # 19 Slide # 28

A. Antoniou

Digital Filters - Sec. 10.6

 Differentiators can also be designed by employing the Fourier series method.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

- Differentiators can also be designed by employing the Fourier series method.
- An analog differentiator is characterized by the continuous-time transfer function

$$H(s) = s$$

Э

・ 回 ト ・ ヨ ト ・ ヨ ト

- Differentiators can also be designed by employing the Fourier series method.
- An analog differentiator is characterized by the continuous-time transfer function

$$H(s) = s$$

 Hence a corresponding digital differentiator can be designed by assigning

$$H(e^{j\omega T}) = j\omega$$
 for $0 \le |\omega| < \omega_s/2$

・ 同 ト ・ ヨ ト ・ ヨ ト

- Differentiators can also be designed by employing the Fourier series method.
- An analog differentiator is characterized by the continuous-time transfer function

$$H(s) = s$$

 Hence a corresponding digital differentiator can be designed by assigning

$$H(e^{j\omega T}) = j\omega$$
 for $0 \le |\omega| < \omega_s/2$

Then on assuming a periodic frequency response, the appropriate impulse response can be determined.

• (1) • (

- Differentiators can also be designed by employing the Fourier series method.
- An analog differentiator is characterized by the continuous-time transfer function

$$H(s) = s$$

 Hence a corresponding digital differentiator can be designed by assigning

$$H(e^{j\omega T}) = j\omega$$
 for $0 \le |\omega| < \omega_s/2$

- Then on assuming a periodic frequency response, the appropriate impulse response can be determined.
- ▶ Gibbs' oscillations due to the transition in $H(e^{j\omega T})$ at $\omega = \omega_s/2$ can be reduced, as before, by using the window technique.

A D D A D D A D D A D D A

Example

 Design a sixth-order differentiator by employing the Fourier-series method.

Use (a) a rectangular window and (b) the Kaiser window with $\alpha = 3.0$.

イロン イヨン イヨン イヨン

크

 Solution Using the Fourier-series method, the impulse response of the differentiator can be obtained as

$$h(nT) = \frac{1}{\omega_s} \int_{-\omega_s/2}^{\omega_s/2} j\omega e^{j\omega nT} d\omega = -\frac{1}{\omega_s} \int_0^{\omega_s/2} 2\omega \sin(\omega nT) d\omega$$

イロン 不同 とうほう 不同 とう

 Solution Using the Fourier-series method, the impulse response of the differentiator can be obtained as

$$h(nT) = \frac{1}{\omega_s} \int_{-\omega_s/2}^{\omega_s/2} j\omega e^{j\omega nT} d\omega = -\frac{1}{\omega_s} \int_0^{\omega_s/2} 2\omega \sin(\omega nT) d\omega$$

On integrating by parts, we get

$$h(nT) = \frac{1}{nT}\cos\pi n - \frac{1}{n^2\pi T}\sin\pi n$$

or

$$h(nT) = \begin{cases} 0 & \text{for } n = 0\\ \frac{1}{nT} \cos \pi n & \text{otherwise} \end{cases}$$

Frame # 22 Slide # 36

・ 回 ト ・ ヨ ト ・ ヨ ト

Э

▶ If we now use the rectangular window with N = 7, we deduce

$$H_w(z) = \frac{1}{6T}(2z^3 - 3z^2 + 6z - 6z^{-1} + 3z^{-2} - 2z^{-3})$$

・ロト ・四ト ・ヨト ・ヨト

Э

▶ If we now use the rectangular window with N = 7, we deduce

$$H_w(z) = \frac{1}{6T}(2z^3 - 3z^2 + 6z - 6z^{-1} + 3z^{-2} - 2z^{-3})$$

► Similarly, if we multiply the impulse response by the Kaiser window function w_K(nT) we get

$$H_w(z) = \sum_{n=-3}^3 w_K(nT)h(nT)z^{-n}$$

Frame # 23 Slide # 38

・ 同 ト ・ 臣 ト ・ 臣 ト

▶ If we now use the rectangular window with N = 7, we deduce

$$H_w(z) = \frac{1}{6T}(2z^3 - 3z^2 + 6z - 6z^{-1} + 3z^{-2} - 2z^{-3})$$

► Similarly, if we multiply the impulse response by the Kaiser window function w_K(nT) we get

$$H_w(z) = \sum_{n=-3}^{3} w_K(nT)h(nT)z^{-n}$$

The parameter α in the Kaiser window can be increased to increase the in-band accuracy or decreased to increase the bandwidth.

Frame # 23 Slide # 39

- 同下 - 三下 - 三下

▶ If we now use the rectangular window with N = 7, we deduce

$$H_w(z) = \frac{1}{6T}(2z^3 - 3z^2 + 6z - 6z^{-1} + 3z^{-2} - 2z^{-3})$$

► Similarly, if we multiply the impulse response by the Kaiser window function w_K(nT) we get

$$H_w(z) = \sum_{n=-3}^3 w_K(nT)h(nT)z^{-n}$$

- The parameter α in the Kaiser window can be increased to increase the in-band accuracy or decreased to increase the bandwidth.
- The design of digital differentiators that would satisfy prescribed specifications is considered in Chap. 15.

Frame # 23 Slide # 40

Frame # 24 Slide # 41

A. Antoniou

Digital Filters - Sec. 10.6

This slide concludes the presentation. Thank you for your attention.