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Introduction

The actual design of recursive filters by optimization involves
several tasks as follows:

I Formulate the objective function.

I Derive the partial derivatives of the objective function.

I Choose a suitable algorithm.

I Design a filter that would satisfy the required specifications
with the minimum filter order.

I Check the stability of the filter designed.
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Formulation of Objective Function

I As was shown in a previous presentation, an arbitrary recursive
filter can be represented by the transfer function

H(z) = H0

J∏
j=1

a0j + a1jz + z2

b0j + b1jz + z2

where aij and bij are real coefficients, J = N/2, and H0 is a
positive multiplier constant.

I Recall that an odd-order transfer function can be obtained by
letting a0j = b0j = 0 for one value of j .
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Formulation of Objective Function Cont’d

I The amplitude response of a recursive filter is given by

M(x, ω) = |H(e jωT )|

where ω is the frequency and

x = [a01 a11 b01 b11 · · · b1J H0]T

is a column vector with 4J + 1 elements.
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Formulation of Objective Function Cont’d

I An approximation error can be constructed as

ei (x) = M(x, ωi )−M0(ωi )

where M(x, ωi ) and M0(ωi ) are the actual and desired amplitude
responses, respectively, and {ωi : i = 1, 2, . . . ,K} is a dense set of
frequencies which are distributed in some way over the passband(s)
and stopband(s) of the filter.

I Hence an objective function can be constructed as

Ψ(x) = Lp(x) = ||E(x)||p =

[
K∑
i=1

|ei (x)|p
]1/p

where p = 2 for a least-squares design and p =∞ for a minimax
design.
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Formulation of Objective Function Cont’d

I Straightforward analysis gives the amplitude response as

M(x, ω) = H0

J∏
j=1

Nj(ω)

Dj(ω)

where

Nj(ω) = [1 + a20j + a21j + 2a1j(1 + a0j) cosωT + 2a0j cos 2ωT ]
1
2

and

Dj(ω) = [1 + b20j + b21j + 2b1j(1 + b0j) cosωT + 2b0j cos 2ωT ]
1
2

for j = 1, 2, . . . , J.
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Formulation of Objective Function Cont’d

I The objective function obtained can be minimized by using a
great variety of optimization algorithms.

I As stated in the previous presentation, quasi-Newton
algorithms are quite efficient as well as robust and, in
addition, they do not require the second derivatives of the
objective function.

I Hence, if there are no constraints other than the stability
constraint, these algorithms can be used to design recursive
filters that would satisfy arbitrary amplitude-response
specifications.

Frame # 7 Slide # 13 A. Antoniou Digital Filters – Secs. 16.7–16.8



Formulation of Objective Function Cont’d

I The objective function obtained can be minimized by using a
great variety of optimization algorithms.

I As stated in the previous presentation, quasi-Newton
algorithms are quite efficient as well as robust and, in
addition, they do not require the second derivatives of the
objective function.

I Hence, if there are no constraints other than the stability
constraint, these algorithms can be used to design recursive
filters that would satisfy arbitrary amplitude-response
specifications.

Frame # 7 Slide # 14 A. Antoniou Digital Filters – Secs. 16.7–16.8



Formulation of Objective Function Cont’d

I The objective function obtained can be minimized by using a
great variety of optimization algorithms.

I As stated in the previous presentation, quasi-Newton
algorithms are quite efficient as well as robust and, in
addition, they do not require the second derivatives of the
objective function.

I Hence, if there are no constraints other than the stability
constraint, these algorithms can be used to design recursive
filters that would satisfy arbitrary amplitude-response
specifications.

Frame # 7 Slide # 15 A. Antoniou Digital Filters – Secs. 16.7–16.8



Gradient of Objective Function

I For an objective function defined in terms of the Lp norm, the
gradient of the objective function can be deduced as

∇Ψk(x) =

{
K∑
i=1

[
|ei (x)|
_
E (x)

]p}(1/p)−1 K∑
i=1

[
|ei (x)|
_
E (x)

]p−1
∇|ei (x)|

where
∇|ei (x)| = [sgn ei (x)]∇ei (x)

with

sgn[ei (x)] =

{
1 if ei (x) ≥ 0

−1 otherwise
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Gradient of Objective Function Cont’d

I The elements of ∇ei (x) can be obtained by differentiating the error
function:

∂ei (x)

∂a0l
=

a0l + a1l cosωiT + cos 2ωiT

[Nl(ωi )]2
·M(x, ωi )

∂ei (x)

∂a1l
=

a1l + (1 + a0l) cosωiT

[Nl(ωi )]2
·M(x, ωi )

∂ei (x)

∂b0l
= −b0l + b1l cosωiT + cos 2ωiT

[Dl(ωi )]2
·M(x, ωi )

∂ei (x)

∂b1l
= −b1l + (1 + b0l) cosωiT

[Dl(ωi )]2
·M(x, ωi )

∂ei (x)

∂H0
=

1

H0
·M(x, ωi )

for l = 1, 2, . . . , J and i = 1, 2, . . . ,K
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Minimum Filter Order

I A problem associated with the design of recursive filters in
general is that there are no known methods for predicting the
minimum filter order that would satisfy prescribed amplitude
and/or phase response specifications.

I However, satisfactory results can often be achieved on a
cut-and-try basis by designing filters of increasing orders until
the error is sufficiently small to satisfy the specifications.
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Prescribed Specifications

I Minimax optimization algorithms in general tend to equalize the
amplitude of the error in the various bands such that

|e(
^
x , ω)| = |M(

^
x , ω)−M0(ω)| ≤ δ

where δ is the maximum value of |e(
^
x , ω)|.

I In practice, the prescribed maximum passband and minimum
stopband attenuations or, equivalently, the required maximum
values of the passband and stopband errors vary wildly from band
to band and from one application to the next.

I In order to achieve desired specifications, we need to be able to
control the relative magnitudes of the maximum passband and
stopband errors, and this is achieved through the use of weighting,
as in the design of nonrecursive filters described in Chap. 15.
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Prescribed Specifications Cont’d

I Weighting essentially involves constructing a modified error
function of the form

e ′i (x) = wmei (x)

= wm[M(x, ωi )−M0(ωi )]

where wm for m = 1, 2, . . . , M are positive weighting
constants which are used to emphasize or deemphasize the
approximation error in selected passbands or stopbands so as
to decrease or increase its magnitude in those bands.

I Typically, wm is assigned a value greater or less than one to
decrease or increase the magnitude of the approximation error
in a given band.
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Prescribed Specifications Cont’d

I If weighting is employed, the optimization algorithm would
tend to equalize the weighted error e ′i (x) such that

|e ′i (x)| = wm|[M(x, ωi )−M0(ωi )]| ≤ δ

I Therefore, the actual error would satisfy the inequality

|[M(x, ωi )−M0(ωi )]| ≤ δ

wm
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Prescribed Specifications Cont’d

· · ·
|[M(x, ωi )−M0(ωi )]| ≤ δ

wm

I If the weighting constants for the various bands are assumed
to be m1, m2, . . . , mM , then at convergence the maximum
band errors would be

δ1 =
δ

w1
, δ2 =

δ

w2
, . . . , δM =

δ

wM

since the optimization algorithm would tend to equalize the
weighted errors in the various bands.
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Prescribed Specifications Cont’d

· · ·
δ1 =

δ

w1
, δ2 =

δ

w2
, . . . , δM =

δ

wM

I Thus if δ1, δ2, . . . , δM are the desired band errors where

δi =
100.05Api

−1

100.05Api + 1

for a passband with a ripple Api dB and

δj = 10−0.05Aaj

for a stopband with a minimum attenuation Aaj dB, the required
weighting constants should be

w1 =
δ

δ1
, w2 =

δ

δ2
, . . . , wk =

δ

δk
, . . . , wM =

δ

δM
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Prescribed Specifications Cont’d

· · ·
w1 =

δ

δ1
, w2 =

δ

δ2
, . . . , wk =

δ

δk
, . . . , wM =

δ

δM

I Assuming that the weighting constant for the kth band is
unity, i.e., wk = 1, then δ = δk and

w1 =
δk
δ1
, w2 =

δk
δ2
, . . . , wM =

δk
δM

I Usually, it is convenient to assign a weighting constant of
unity to a passband.
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Prescribed Specifications Cont’d

Arbitrary filter specifications can be achieved as follows:

1. Choose suitable weighting constants on the basis of the
prescribed specifications as described.

2. Design filters for increasing orders until a filter is found that
would satisfy the required specifications for band k .

The filter obtained would usually satisfy the specifications in
all the other bands as well.

3. If the filter does not satisfy the specifications in all the bands,
increase the filter order, say, by two, and try again.

Evidently, this is a trial and error method and it could entail a
considerable amount of computation.
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Stability

I Least-squares or minimax algorithms often yield discrete-time
transfer functions with poles outside the unit circle |z | = 1,
and such transfer functions represent unstable filters.

I Fortunately, it is possible to eliminate this problem through a
stabilization technique that has been known for a number of
years.
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Stability Cont’d

I Let us assume that an optimization algorithm has produced a
discrete-time transfer function

H(z) = H0
N(z)

D(z)
= H0

N(z)

D ′(z)
∏k

i=1(z − p̃i )

with k poles p̃1, p̃2, . . . , p̃k that lie outside the unit circle.

I A stable transfer function that yields the same amplitude response
can be obtained as

H ′(z) = H ′0
N(z)

D ′(z)
∏k

i=1(z − 1/p̃i )
= H ′0

N(z)

1 +
∑N

i=1 b
′
i z

i

where

H ′0 = H0
1∏k

i=1 p̃i

See textbook for details.
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Example

I Through the application of the singular-value decomposition,
the problem of designing two-dimensional digital filters can be
broken down into a problem of designing a set of
one-dimensional digital filters.

I The amplitude responses of the one-dimensional filters so
obtained turn out to be quite irregular and, consequently,
their design can be accomplished only through the use of
optimization methods.

I The amplitude response of such a filter is specified at 21
frequency points as shown in the table in the next slide.

I Obtain an eighth-order design using the least-pth minimax
algorithm.
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Example Cont’d

Amplitude Response

ω Gain ω Gain ω Gain

0.00 1.0770 0.35 0.0304 0.70 0.7950
0.05 0.9863 0.40 0.1665 0.75 0.7950
0.10 0.9866 0.45 0.4402 0.80 0.7950
0.15 0.8428 0.50 0.6231 0.85 0.7950
0.20 0.8436 0.55 0.7471 0.90 0.7950
0.25 0.6466 0.60 0.7950 0.95 0.7950
0.30 0.3955 0.65 0.7950 1.00 0.7950
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Example Cont’d

Solution

I A design was obtained by assuming a transfer function of the
form

H(z) = H0

4∏
j=1

a0j + a1jz + z2

b0j + b1jz + z2

I Typically the number of sample points required to achieve
good precision depends critically on the selectivity of the filter.

The problem was solved by using the least-pth algorithm
along with the variable sampling technique of Sec. 16.6 and
good results were achieved with 35 actual sample points.

If fixed uniformly-spaced sample frequencies were used, 85 to
170 sample points would be required to achieve similar results.
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good results were achieved with 35 actual sample points.

If fixed uniformly-spaced sample frequencies were used, 85 to
170 sample points would be required to achieve similar results.
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Example Cont’d

I Since the amplitude response is specified at only 21 points, it
is necessary to apply interpolation to the numerical values
supplied in order to obtain the values of the idealized
amplitude response with respect to a dense set of frequencies.

Quadratic or cubic interpolation can be used for the purpose
(see textbook).

I Any initial point can be used for this problem.

A good practice is to start with a stable transfer function
because, usually, stability tends to be preserved during the
optimization.

The initial point used for this design was

x = [1 1 0.75 1 1 1 0.75 1 1 −1 0.75 −1 1 −1 0.75 −1 1]T

Frame # 23 Slide # 49 A. Antoniou Digital Filters – Secs. 16.7–16.8



Example Cont’d

I Since the amplitude response is specified at only 21 points, it
is necessary to apply interpolation to the numerical values
supplied in order to obtain the values of the idealized
amplitude response with respect to a dense set of frequencies.

Quadratic or cubic interpolation can be used for the purpose
(see textbook).

I Any initial point can be used for this problem.

A good practice is to start with a stable transfer function
because, usually, stability tends to be preserved during the
optimization.

The initial point used for this design was

x = [1 1 0.75 1 1 1 0.75 1 1 −1 0.75 −1 1 −1 0.75 −1 1]T

Frame # 23 Slide # 50 A. Antoniou Digital Filters – Secs. 16.7–16.8



Example Cont’d

I The amplitude response achieved is shown in the figure.
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Example Cont’d

I The progress of the algorithm is illustrated in the table shown.

Progress of Algorithm

k p Ψ(x)

1 2 7.106816E-2
2 4 3.726389E-2
3 8 3.329217E-2
4 16 3.757264E-2
5 32 3.472619E-2
6 64 3.359927E-2
7 128 3.304717E-2
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Design of Recursive Equalizers

I In many applications, recursive digital filters are required with a flat
delay characteristic or, equivalently, a linear phase response with
respect to passbands.

I Unfortunately, most of the available methods for the design of
recursive digital filters, for example, the bilinear transformation
method, tend to yield filters that have a nonlinear phase response.

I One way to overcome this problem is to design the filter such that
the required amplitude response specifications and a linear phase
response with respect to the passbands are achieved simultaneously.

This can be done with optimization but, unfortunately, constrained
optimization is required in order to achieve a stable design, which
tends to be more complicated than unconstrained optimization and,
furthermore, it requires a considerable amount of computation.
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Design of Recursive Equalizers Cont’d

I A simpler approach is first to design a filter that would satisfy
the amplitude response specifications ignoring the group delay
and then design a recursive delay equalizer which can be used
in cascade with the filter to compensate for variations in the
group delay of the filter.

I The recursive filter can be designed by using the approach of
Chap. 13 whereas the equalizer can be designed by using
unconstrained optimization.
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Design of Recursive Equalizers Cont’d

I In a cascade arrangement like the one shown, we have an
overall transfer function

HFE (z) = HF (z) · HE (z)

where HF (z) and HE (z) are the transfer functions of the filter
and equalizer, respectively.

HE(z)HF(z)

Filter Equalizer
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Design of Recursive Equalizers Cont’d

· · ·
HFE (z) = HF (z) · HE (z)

I The frequency response of the cascade arrangement is given
by

MFE (ω)e jθ(ω) = MF (ω)e jθF (ω) ·ME (ω)e jθE (ω)

Hence, the amplitude response, phase response, and group
delay characteristic of the arrangement are given by

MFE (ω) = MF (ω) ·ME (ω)

θFE (ω) = θF (ω) + θE (ω)

τFE (ω) = τF (ω) + τE (ω)

respectively.

Frame # 29 Slide # 60 A. Antoniou Digital Filters – Secs. 16.7–16.8



Design of Recursive Equalizers Cont’d

· · ·
MFE (ω) = MF (ω) ·ME (ω)

θFE (ω) = θF (ω) + θE (ω)

τFE (ω) = τF (ω) + τE (ω)

An equalized filter can be designed as follows:

1. Design a recursive filter such that the amplitude response MF (ω)
satisfies the required specifications.

2. Find the group delay characteristic of the recursive filter.

3. Design an equalizer such that ME (ω) = 1 at all frequencies and

τFE (ω) = τF (ω) + τE (ω) ≈ τ0

over the passband(s), where τ0 is a constant.

An equalizer is essentially a so-called allpass filter.
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Design of Recursive Equalizers Cont’d

I An allpass filter can be obtained by using a transfer function
of the form

HE (z) =
M∏
j=1

1 + c1jz + c0jz
2

c0j + c1jz + z2

Note that the numerator coefficients are the same as the
denominator coefficients except that they appear in the
reverse order.
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Design of Recursive Equalizers Cont’d

I The square of the gain of an allpass filter can be deduced by
multiplying the frequency response of the filter by its complex
conjugate, i.e.,

[ME (ω)]2 = HE (z) · HE (z−1)
∣∣∣
z=e jωT

=
M∏
j=1

1 + c1jz + c0jz
2

c0j + c1jz + z2
·

1 + c1jz
−1 + c0jz

−2

c0j + c1jz−1 + z−2

∣∣∣∣∣
z=e jωT

=
M∏
j=1

1 + c1jz + c0jz
2

c0j + c1jz + z2
·
z2 + c1jz + c0j
c0jz2 + c1jz + 1

∣∣∣∣∣
z=e jωT

= 1

Therefore, ME (ω) = 1 for all frequencies.
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Design of Recursive Equalizers Cont’d

· · ·
τFE (ω) = τF (ω) + τE (ω) ≈ τ0

Delay of filter

Delay of equalizer

Delay of filter 

plus equalizer
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Design of Recursive Equalizers Cont’d

· · ·
τFE (ω) = τF (ω) + τE (ω) ≈ τ0

I Next we need to construct an objective function.

An error function can be formulated as

ei (x) = τFE (x, ωi )− τ0 = τF (ω) + τE (ω)− τ0

where x = [c01 c11 c02 · · · c1M τ0]T and {ωi : 1, 2, . . . ,K}
is a dense set of frequencies in the passband(s) of the filter.

I A minimax optimization problem can now be constructed as

minimize
x

max
1≤i≤K

|ei (x)|
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Design of Recursive Equalizers Cont’d

· · ·
ei (x) = τFE (x, ωi )− τ0 = τF (ω) + τE (ω)− τ0

x = [c01 c11 c02 · · · c1M τ0]T

I The value of the desired constant delay τ0 is usually unknown
and to provide additional flexibility it is assumed to be an
independent variable.

I Formulas for the group delays of the filter and the equalizer,
τF (ω) and τE (ω), as well as for the partial derivatives of the
error function, ei (x), can be found in the textbook.
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Design of Recursive Equalizers Cont’d

I As in the case of filters, the equalizer order that would provide
sufficient equalization is not known in advance.

Suffice it to say that the order of the equalizer can be as high as the
order of the filter.

I It turns out that an attempt to design a high-order equalizer using a
single minimax optimization can easily yield an unstable design.

Unfortunately, in the case of equalizers, stability cannot be restored
using the available technique for recursive filters without causing the
phase response to become nonlinear.

I However, by using an appropriate sequential optimization algorithm,
as detailed in Chap. 16, good quality, stable equalizers can be
designed.
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Design of Recursive Equalizers Cont’d

The sequential optimization algorithm is based on the following strategy:

1. Design a 1-section second-order equalizer using several initial points
that correspond to stable designs and select the best design.

2. Design a 2-section fourth-order equalizer using the 1-section design
obtained in Step 1 for the initialization of the first section and
initialize the second section using a point in the neighborhood of
the solution for the 1-section equalizer.

Repeat with three other initial points in the neighborhood of the
solutions and then select the best stable design.

3. Design a 3-section sixth-order equalizer using the 2-section design
obtained in Step 2 for the initialization of the first 2 sections and
initialize the third section using a point in the same neighborhood.

4. Proceeding as in Step 3, add new second-order sections until the
required amount of equalization is achieved.
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Example

I The results obtained for a bandpass elliptic filter are shown in
the next slide.
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Example Cont’d
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Zero-Phase Filters

I Consider a cascade arrangement of two digital filters as shown
with transfer functions H(z) and H(z−1).

I The frequency response of the cascade arrangement is given
by

H0(e jωT ) = H(e jωT ) · H(e−jωT ) = |H(e jωT )|2

I Since the frequency response of the arrangement is real, the
phase response as well as the group delay are zero.

H(z-1)H(z)

Filter #1 Filter #2
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Zero-Phase Filters Cont’d

I If Filter #1 is a causal filter with an impulse response h(nT ),
then Filter #2 can be shown to be a noncausal filter with an
impulse response h(−nT ), i.e., the impulse response of the
second filter is the mirror-image of that first filter with respect
to the y axis.

I Obviously, such a design cannot be implemented in real time.

H(z-1)H(z)

Filter #1 Filter #2

Frame # 41 Slide # 89 A. Antoniou Digital Filters – Secs. 16.7–16.8



Zero-Phase Filters Cont’d

I If Filter #1 is a causal filter with an impulse response h(nT ),
then Filter #2 can be shown to be a noncausal filter with an
impulse response h(−nT ), i.e., the impulse response of the
second filter is the mirror-image of that first filter with respect
to the y axis.

I Obviously, such a design cannot be implemented in real time.

H(z-1)H(z)

Filter #1 Filter #2
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Zero-Phase Filters Cont’d

I However, a nonreal-time implementation is possible by using
two copies of Filter #1 as shown in the figure.

I Devices R are simple first-in-last-out data registers.

The first register simply saves the output of the first filter and
feeds it backwards into the second filter whereas the second
register reverses the output of the second filter.

H(z)H(z)

R R
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Zero-Phase Filters Cont’d

I Put another way, the first filter delays the signal by τ(ω) s.

The second filter delays the reversed version of the signal by τ(ω) s
or, equivalently, it delays the signal by −τ(ω), i.e., it advances the
signal by τ(ω).

I Therefore, an overall delay of τ(ω)− τ(ω) = 0 s is achieved but the
signal at the output of the second filter is reversed.

Thus, another register is needed at the output!

H(z)H(z)

R R
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Zero-Phase Filters Cont’d

I Note that the overall maximum passband ripple and minimum
stopband attenuation of the cascade arrangement would be
twice the corresponding parameters of the individual filters.

In other words, if the specifications call for an overall
passband ripple and a minimum stopband attenuation of Ap

and Aa, respectively, then the corresponding specifications for
each filter should be Ap/2 and Aa/2, respectively.

See Sec. 13.5.2 of textbook for more details.
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Zero-Phase Filters Cont’d

I Single-filter implementation – Phase #1:

H(z)

R

R
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Zero-Phase Filters Cont’d

I Single-filter implementation – Phase #2:

H(z)

R

R
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Zero-Phase Filters Cont’d

I Single-filter implementation – Phase #3:

H(z)

R

R
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Summary

I A great variety of optimization algorithms can be used for the
design of recursive filters.

I Quasi-Newton algorithms work very well.

I The optimization approach is very flexible in that it can be used to
design filters with arbitrary amplitude and/or phase responses.

I In FIR filters as well as recursive filters based on the bilinear
transformation, techniques are available that can be used to predict
the required filter order to achieve prescribed specifications.

Unfortunately, in recursive filters designed by optimization the filter
order can only be deduced through a cut-and-try approach.

I As in any other methodology based on optimization, a large amount
of computation is required to complete a design.
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This slide concludes the presentation.

Thank you for your attention.
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