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Time-domain analysis is the process of finding the response of a
system, y(nT), to a given excitation, x(nT).

Discrete-time system
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Three different methods are available for the time-domain analysis
of discrete-time systems:
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¢ The induction method involves solving the difference equation
using induction.

¢ The method is somewhat primitive and inefficient.

¢ However, it is an intuitive method that demonstrates the
mode of operation of a discrete-time system.

¢ It is useful as an introduction to time-domain analysis but it
tends to become quite complicated in higher-order
discrete-time systems.
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¢ The state-space method entails the manipulation of matrices.

¢ It is quite useful in applications where routines for the
manipulation of matrices are available, e.g., in MATLAB.

¢ It is applicable to time-dependent systems.
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¢ The z transform method is the most efficient and most

frequently used method among the available methods.

¢ Its main disadvantage is that it cannot be applied to
time-dependent or nonlinear systems.

¢ The details of the method can be found in Chap. 5.



¢ The induction method for time-domain analysis can be

illustrated by finding the impulse, unit-step, and sinusoidal
response of a simple recursive system.

As will be shown, all that is necessary is simple algebra.
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Find the impulse response of the recursive system
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assuming an initially relaxed system.
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Solution The difference equation is
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y(nT) =x(nT) + py(nT — T)
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y(nT) =x(nT)+ py(nT —T)
If x(nT)=46(nT), we have

y(nT)=6(nT)+ py(nT —T)
For an initially relaxed system, y(nT) = 0 for n < 0 and hence we have
y(0) =0(0) +py(-T)=1+0=1

y(T)=3dT)+py(0)=0+px1=p
y(2T) = 6Q2T)+py(T)=0+p-p=p°

y(nT) = u(nT)p" m

The unit-step u(nT) is added to ensure that y(nT) =0 for n < 0.
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unit-step response:

Assuming that the system shown is initially relaxed, find the
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Solution The difference equation is
y(nT)=x(nT)+ py(nT = T)
If x(nT) = u(nT), we have
have

y(nT)=u(nT)+ py(nT —T)

For an initially relaxed system, y(nT) = 0 for n < 0 and hence we
y(0) = u(0) +py(~-T)=1+0=1
y(T)=u(T)+py(0)=1+p

y(2T) = u(2T) + py(T) =1+ p+p?

. n
y(nT) = u(nT)>_ p*
k=0 o <D = = = 9ace
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n
y(nT) = u(nT) ) p*
We can write
y prmnd
py

k=0
(nT) = u(nT)(L+p+p*+---+p")
(nT) = u(nT)(p+p* + -+ p" + p(")
Subtracting Eq. (B) from Eq. (A), we get
y(nT)
or

(A)
py(nT) = u(nT)(

(B)
1— plrth)
(n+1)
nT)=u(nT)———
y(nT) = u( ) —
o = = = = 9ac
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1-p
p>1

_ n(n+1)
y(nT) = u(nT)lp—
Therefore, there are three cases to consider:
(i) p<1
(i) p=1
(iii)



y(nT) = U(nT)

(n+1)
-p
(i) For p < 1, the steady-state response is obtained by evaluating
y(nT) for n — oo, i.e
im y(nT) =
D) =g,



1-p

ce .
y(nT) = u(nT)lp—
y(nT) for n — o, i.e.,

(i) For p < 1, the steady-state response is obtained by evaluating
: 1
Jim, (o) =

(i) For p =1, using I'Hopital’s rule we get

1-p

_ p(n+1)
d(1—p"V)/dp _
p=1 d(1—p)/dp
n'L"goJ’("T)%OO ]
o = = = = 9Dae
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Hence




(iii) For p>1
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system

Assuming zero initial conditions, find the response of the recursive
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to the sinusoidal excitation

x(nT)=u(nT)sinwnT



Solution As before, the difference equation is
y(nT)=x(nT)+ py(nT —T)
If x(nT)=u(nT)sinwnT, we have
y(nT) =Rx(nT) = u(nT)sinwnT + py(nT —T)
The system is linear and so
y(nT) = Rlu(nT)sinwunT] =R [u(nT)zlj(ej“’"T - e_j‘*’"T)}
= % [Ru(nT)ej“’"T - ’Ru(nT)e_j“’”T]
= 3[n(nT) = y2(nT)]
where

yi(nT) =Ru(nT)e“"T and yy(nT) =Ru(nT)e T

o> <3 = = wae



y(nT) =x(nT) + py(nT —T)

yi(nT) =Ru(nT)e®"T and y»(nT)=Ru(nT)e 7T

The partial response y;(nT) can be obtained as
A(nT) = R [u(nT)&"T| = u(nT)&*"T + py(nT - T)
Hence

y1(0) = u(0)e’ + pys (- T) =1
yi(T) = T +pyi(0) = &7 +p
n(2T) = 2T +py(T) = &7 + peT 4 p?

yi(nT) = u(nT)(&“"T + pel(=DT .4 pn=D)giwT 4 5n)
= u(nT)ejw"T(l + pe_j‘”T 4+ 4 pne(—jan))
o ﬁl =7



yi(nT) = u(nT)e*"T (1 + pe T 4 ... 4 prel=imT))

n
= u(nT)ejwnT Z pke(—jkwnT)
k=0

This is a geometric series in powers of pel=i“nT) and its sum can
be obtained as

gfonT _ p(ntl)g=jwT
y1(nT) = u(nT) P




ejwnT _ p(n+1)e—ij
yi(nT) = u(nT) T
Now consider the function

eij . .
_ pyr ><(ejz,unT_p(n+1)e—_/wT
H(ej“’T) _ T _ coswT +jsinwT

ewT —p  coswT +jsinwT —p
and let ' '
H(eT) = M(w)e//®)
where M(w) = [H(eT)|
and

1
1+ p?—2pcoswT
. inwT
f(w) = arg H(&*T) = wT —tant N1
(w) = arg H( )=w an coswT —p
o = - = = ©wac
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eij
T = ——
yl(n ) eij —-p
and
where

% (ejwnT _ p(n—l—l)e—ij)
and

H(e*T) = M(w)e?@)
M(w) = [H(“T)| =

1
O(w) = arg H(e®T) =wT —tan~!

V14 p2—2pcoswT

By using these relations, y1(wT) can be expressed as

sinwT
coswT —p
y1(nT) _ u(nT)M(w)(ej[O(w)+wnT] N p(n+1)ej[0(w)—wT])
o = = = = 9an
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yi(nT) = u(nT)M(w)(el0@)FenT] _ p(n+1) oilo(w)=wT])
By replacing w by —w in y1(nT), we get
yz(nT) _ u(nT)M(w)(ej[e(—w)—wnT] _ p(n+1)ej[0(—w)+wT])

By noting that M(w) is an even function and #(w) an odd function
of w, i.e.,

M(—w) = M(w) and 6(—w)=—0(w)
we can readily show that
y(nT) = 5[ (nT) = y2(nT)]

= u(nT)M(w)sinfwnT + O(w)]
—u(nT)M(w)p" ) sin[f(w) — wT]

O = E E DA



y(nT) = u(nT)M(w) sinfwnT + O(w)]
—u(nT)M(w)p" ) sin[f(w) — wT]

As can be seen, the sinusoidal response of the system consists of
two components.

If p < 1, the second term represents a transient component that
reduces to zero as n — oo. Therefore,

y(nT) = nILn;o y(nT) = M(w)sinfwnT +0(w)] =

If p =1, the transient component is a constant. If p > 1 the
transient component tends to infinity as n — oo i.e.,

y(nT) = Ii_}m y(nT) 500 m

=] = = = E DA
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¢ The time-domain analysis has shown that the response of a

first-order recursive system to a sinusoidal excitation of unity
amplitude and zero phase angle, i.e.,

x(nT) =sin(wnT)
is a sinusoid of amplitude M(w) and angle §(w), i.e.,

x(nT) = M(w)sinjwnT + 6(w)]

provided that the transient component decays to zero.



¢ The time-domain analysis has shown that the response of a
first-order recursive system to a sinusoidal excitation of unity
amplitude and zero phase angle, i.e.,

x(nT) =sin(wnT)

is a sinusoid of amplitude M(w) and angle §(w), i.e.,

x(nT) = M(w)sinjwnT + 6(w)]

provided that the transient component decays to zero.

as nonrecursive systems in general.

¢ It turns out that this is a general property of recursive as well
=} [ = E E DA
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¢ The time-domain analysis has shown that the response of a
first-order recursive system to a sinusoidal excitation of unity
amplitude and zero phase angle, i.e.,

x(nT) =sin(wnT)
is a sinusoid of amplitude M(w) and angle §(w), i.e.,
x(nT) = M(w)sinjwnT + 6(w)]

provided that the transient component decays to zero.

¢ It turns out that this is a general property of recursive as well
as nonrecursive systems in general.

¢ The transient response of a discrete-time system will decay to
zero only if the system is stable (see Sec. 4.7).

=] = = = E DA



This slide concludes the presentation.
Thank you for your attention.



