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A The convolution summation is of considerable importance for

the characterization, representation, analysis, and design of
discrete-time systems.

A This presentation will deal with the derivation, properties, and
applications of the convolution summation.



up of a series of impulses as shown:
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algebra.

A What has been done graphically can now be done in terms of



o0
where

A What has been done graphically can now be done in terms of
algebra.
A An arbitrary signal can be written as

x(nT) = Z xk(nT)

k=—00

s (nT) = {g(kT) for n=k

otherwise
= x(kT)o(nT — kT)
o = = = = 9ae
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o0
where

A What has been done graphically can now be done in terms of
algebra.
A An arbitrary signal can be written as

x(nT) = Z xk(nT)

k=—00

kT) f =k
s (nT) = {x( ) forn
0
A Hence

otherwise
= x(kT)6(nT — kT)
x(nT) = Y x(kT)6(nT — KkT) (A)
k=—0o0
o = = E E 9ax



[e.9]

x(nT) = > x(kT)5(nT — KkT)
k=—00
impulse response is given by

(A)

h(nT) =Rdé(nT)

A Consider a linear time-invariant system and assume that its



x(nT) = > x(kT)5(nT — KkT)
k=—00
impulse response is given by

A From Eq. (A), we have

(A)
h(nT) =Rdé(nT)
y(nT) =

A Consider a linear time-invariant system and assume that its

Rx(nT)=TR Z

(kT)8(nT — kT)
k=—o00
=] = = = = ©ac
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x(nT) = > x(kT)5(nT — KkT)
k=—00
impulse response is given by

A From Eq. (A), we have

(A)
h(nT) =Rdé(nT)
y(nT) =

A Consider a linear time-invariant system and assume that its

Rx(nT)=TR Z
A Since the system is linear

(kT)5(nT — kT)
k=—o00
y(nT) = i x(KT)RS(nT — kT)
k=—00
o = = = = 9ac



y(nT) = i x(KTYRS(nT — kT)
k=—00

A The system is also time-invariant and hence we get

[ee)

y(nT)= Y x(kT)h(nT — kT)
k=—00



o

k=—00

y(nT)= Y x(kT)R6(nT — kT)

A The system is also time-invariant and hence we get

[ee)

k=—00

y(nT)= Y x(kT)h(nT — kT)

A This relation is known as the convolution summation.



A If we let k = n— k’ in the convolution summation

oo

k=—o00

y(nT)= > x(kT)h(nT — kT)
then k' = n— k.



A If we let k = n— k’ in the convolution summation
oo

y(nT)= > x(kT)h(nT — kT)
then k' = n— k.

k=—o00
Alf

k — oo then
and if

k' — —o0
k — —oo then

k' = oo



A If we let k = n— k’ in the convolution summation
oo

y(nT)= > x(kT)h(nT — kT)
then k' = n— k.

k=—00
Alf

k — oo then
and if

k' — —o0
k — —oo then k' — oo
A Hence the convolution summation can also be expressed as

— 00

y(nT)= Y x(nT = K'T)h(K'T)

k’'=00
=} [ = E E DA



—00
y(nT)= " x(nT — K'T)h(K'T)
k=00
we obtain the identity

A Dropping the primes and reversing the order of summation,
o

k=—o00

y(nT)= Y x(KT)h(nT — kT) =

k=—o00

i h(kT)x(nT — kT)
o = = = = 9ac



A Two special cases of the convolution summation are of
particular interest.
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A Two special cases of the convolution summation are of
particular interest.
n

A If the system is causal, we have h(nT) =0 for n < 0, and so

y(nT)= Y x(KT)h(nT — kT) =
k=—00

i h(kT)x(nT — kT)
k=0



A Two special cases of the convolution summation are of
particular interest.

A If the system is causal, we have h(nT) =0 for n < 0, and so

n

y(nT)= Y x(KT)h(nT — kT) =

k=—o00

i h(kT)x(nT — kT)
k=0

A If, in addition, x(nT) = 0 for n < 0, we have

n

y(nT) = x(kT)h(nT — kT) =
k=0

i h(kT)x(nT — kT)

k=0



n

y(nT) = x(kT)h(nT — kT

n

)= h(kT)x(nT — KT)
k=0 k=0
Evidently, if the impulse response h(nT) of a discrete-time system

is known, its response to an arbitrary excitation can be readily
determined by using the convolution summation.
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Using the convolution summation, find the unit-step response of a
discrete-time system characterized by the equation

y(nT)=x(nT)+ py(nT = T)
The system has an impulse response

h(nT)=u(nT)p"
and is initially relaxed (i.e., y(nT) =0 for n < 0).



Solution The convolution summation gives
o0
y

(nT) = Ru(nT) = > u(kT)p*u(nT — kT)

k=—o0

k=1 k=0 k=1
=+ u(=T)p tu(nT + T)+ u(0)pu(nT) 4+ u(T)p'u(nT — T)
k=n k=n+1
+o 4 u(nT)J;J"u(O) +L(nT + T)p™tu(~T)+---
For n < 0, the unit step assumes a value of zero and hence we get
y(nT) = 0 since all the terms are zero.



:
y

(nT) = Ru(nT) = Z W(kT)p u(nT — KT)

k=—o00

k=—1

k=0

k:l
= o u(=T)pLu(nT + T) + u(0)p u(nT) + u(T)p u(nT — T)
k=n

A

k=n+1
+--+u(nT)p"u(0)+ u(nT + T)p"+1u(__,_) N
For n > 0, we obtain

y(nT)=1+p'+p°+--



For n< 0, y(nT) = 0.
For n > 0,

1— p(n+1)
T
y(nT) -
Therefore, the response can be expressed in closed form as
(n+1)
y(nT) = u(nT)

—-p



1-p

y(nT)=Ru(nT) = u(nT)
and is initially relaxed (i.e., y(nT) =0 for n < 0).

1— p(n+1)
Find the response produced by the excitation

(nT) = {(1)

for0<n<4

otherwise



Solution We observe that
1 for0<n<4
x(nT) = or _-n_ =
0 otherwise
and so
y

=u(nT)—u(nT —5T)
(nT) =Rx(nT) =Ru(nT)
Since

we get

y(nT) =

Ru(nT —5T)

Ru(nT) = u(nT)

_ p(n+1)
—p
_ 1— p("+1) 1— p("_4)
y(nT) = u(nT)ﬁ—u(nT—ST)ﬁ ]
=] = - = = ©wac
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«(nT) = {O forn<0
n

An initially relaxed causal nonrecursive system was tested with an
input

forn>0
and found to have the response given by the following table:
n 0 1 2 3 4 5 6 7
y(nT) |0 1 4 10 20 30 40 50
(a) Find the impulse response of the system for values of n over
the range 0 < n <5.
(b) Using the result in part (a), find the unit-step response for
0< n<5.



Solution (a) Since the system is causal and x(nT) = 0 for n < 0, the
convolution summation assumes the form
n

y(nT) =Rx(nT) = > x(kT)h(nT — kT)

k=0

= x(0)h(nT) +x(T)h(nT — T)+---+ h(0)x(nT)



Solution (a) Since the system is causal and x(nT) = 0 for n < 0, the
convolution summation assumes the form

y(nT) =Rx(nT) = > x(kT)h(nT — kT)
k=0
= x(0)h(nT) +x(T)h(nT — T) +---+ h(0)x(nT)

Evaluating y(nT) forn=1, 2,..., we get

y(T) = x(0)h(T) +x(T)h(0) =0-h(T)+1-h(0)=1 or h(0)=1
y(2T) = x(0)h(2T) + x(T)h(T) + x(2T)h(0)

= 0-h(2T)+1-h(T)+2- h(0)

=0+h(T)+2=4 or h(T)=2
y(3T) = x(0)h(3T) + x(T)h(2T) + x(2T)h(T) + x(3T)h(0)

= 0-h(3T)+1-h(2T)+2- h(T) +3 - h(0)

= h(2T)+2-2+3-1=10 or h(2T)=3

=] = = = E DA



y(4T) = x(0)h(4T) + x(T)h(3T) + x(2T)h(2T) + x(3T)h(T)
+x(4T)h(0)
=0-h(4T)+1-h(3T)+2-h(2T)+3-h(T)+4- h(0)
=h(3T)+2-3+3-2+4-1=20 or h(3T)=4
y(5T) = x(0)h(5T) + x(T)h(4T) + x(2T)h(3T) + x(3T)h(2T)

+ x(4T)h(T) + x(5T)h(0)
=0-h(5T)+1-h(4T)+2-h(83T)+3-h(2T)+4-h(T)+5- h(0)
=0+h(4T)+2-4+3-3+4-245-1=30 or h(4T)=0

y(6T) = x(0)h(6T) 4+ x(T)h(5T) +x(2T)h(4T) + x(3T)h(3T)

+x(4T)h(2T) + x(5T)h(T) + x(6 T)h(0)
=0-h(6T)4+1-h(5T)+2-h(4T)+3-h(3T)+4-h(2T)

+5-h(T)+6- h(0)
= h(5T)+2-0+3-4+4-3+5-2+6-1
=40 or h(5T)=0

=] = = = E DA



Summarizing the results so far, we have

h(0)
h(3T)

1 KT)=2 h@2T)=3
4 hAT)=0 h(5T)=0 m



(b) Using the convolution summation again, we obtain the
unit-step response as follows:

n

y(nT) =Rx(nT) = Z u(kT)h(nT — kT) = 2”: h(nT — kT)
k=0 k=0

Hence

y(0) = h(0) =1
y(T)=h(T)+h(0)=2+1=3
y(2T) = h(2T)+ h(T)+ h(0) =3+2+1=6
y(3T) = h(3T) + h(2T) + h(T) + h(0) = 10
y(4T) = h(4T) + h(3T) + h(2T) + h(T) + h(0) = 15
y(5T) = h(5T) + h(4T) + h(3T) + h(2T) + h(T) + h(0) =21 =

=] = = = E DA



Discrete-time systems can also be classified on the basis of the
duration of the impulse response as

— finite-duration impulse response (FIR) systems

— infinite-duration impulse response (IIR) systems



N

k=0

A If the impulse response of a discrete-time system is of finite
duration such that h(nT) = 0 for n > N, then the convolution
summation gives

y(nT) = h(kT)x(nT — kT)



A If the impulse response of a discrete-time system is of finite
duration such that h(nT) = 0 for n > N, then the convolution
summation gives

N

y(nT) = h(kT)x(nT — kT)
k=0

A This equation is of the same form as the difference equation
of a nonrecursive system, i.e.,

y(nT) = Z aix(nT —iT)

with
h(o) = 4o, h(T) =a, .. .y h(NT) = ay

=] = = = E DA



Thus we conclude that
finite duration, and

A the impulse response of a nonrecursive system is always of
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Thus we conclude that
finite duration, and

A the impulse response of a nonrecursive system is always of

A given an impulse response of finite duration, a nonrecursive
system can be obtained.
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A An impulse response of infinite duration could be achieved
system.

with a nonrecursive system of infinite order or with a recursive
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A An impulse response of infinite duration could be achieved

with a nonrecursive system of infinite order or with a recursive
system.

A Since infinite-order systems are not feasible, an

infinite-duration impulse response can only be achieved with a
recursive system.



A An impulse response of infinite duration could be achieved

with a nonrecursive system of infinite order or with a recursive
system.

A Since infinite-order systems are not feasible, an

infinite-duration impulse response can only be achieved with a
recursive system.

A To confuse the issue somewhat, it is possible to construct a
recursive system that has a finite-duration impulse response!



A To illustrate that an FIR system can be represented by a

recursive equation, or by a network with feedback, consider an
FIR system represented by the equation

y(nT) =x(nT)+3x(nT —T)



A To illustrate that an FIR system can be represented by a
recursive equation, or by a network with feedback, consider an
FIR system represented by the equation

y(nT) =x(nT)+3x(nT —T)

A If we premultiply both sides of the equation by the operator
(14 4€71), we get

(1445 Yy(nT) = (1 +4EYH)[x(nT) +3x(nT — T)]



A To illustrate that an FIR system can be represented by a
recursive equation, or by a network with feedback, consider an
FIR system represented by the equation

y(nT) =x(nT)+3x(nT —T)

A If we premultiply both sides of the equation by the operator
(14 4€71), we get

(1445 Yy(nT) = (1 +4EYH)[x(nT) +3x(nT — T)]
A After simplification, we have

y(nT) +4y(nT — T) = x(nT) + 3x(nT — T)
+4x(nT — T) +12x(nT —2T)



equation

y(nT)+4y(nT — T) = x(nT) +3x(nT — T)

+4x(nT — T) +12x(nT —2T)
A Thus the FIR system can be represented by the recursive

y(nT) =x(nT)+7x(nT — T)+12x(nT —2T)—4y(nT —T)



y(nT)+4y(nT — T) = x(nT) +3x(nT — T)
+4x(nT — T) +12x(nT —2T)

A Thus the FIR system can be represented by the recursive
equation

y(nT) =x(nT)+7x(nT — T)+12x(nT —2T)—4y(nT —T)

A Evidently, the manipulation has actually increased the order of
the difference equation and, therefore, no obvious advantage
is gained by converting an FIR system into a recursive one.



y(nT)+4y(nT — T) = x(nT) +3x(nT — T)
+4x(nT — T) +12x(nT —2T)

A Thus the FIR system can be represented by the recursive
equation

y(nT) =x(nT)+7x(nT — T)+12x(nT —2T)—4y(nT —T)

A Evidently, the manipulation has actually increased the order of
the difference equation and, therefore, no obvious advantage
is gained by converting an FIR system into a recursive one.

A For most practical purposes nonrecursive systems are FIR

systems and recursive systems are |IR systems.
=] [ = E E DA



Note: An |IR system cannot be a nonrecursive system and

vice-versa. However, a recursive system can be constructed that
also an FIR system but such a system would serve no useful

is
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N
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A A discrete-time system is said to be stable if and only if any
bounded excitation results in a bounded response, i.e.,

if [x(nT)| <oo then |y(nT)| < oo



A A discrete-time system is said to be stable if and only if any
bounded excitation results in a bounded response, i.e.,

if [x(nT)| <oo then |y(nT)| < oo

A For a linear and time-invariant system, the convolution
summation gives

[ee)

k=—o00

y(nT)= > h(kT)x(nT — kT)



A A discrete-time system is said to be stable if and only if any
bounded excitation results in a bounded response, i.e.,

if [x(nT)| < oo then |y(nT)| < oo

A For a linear and time-invariant system, the convolution
summation gives

[ee)

y(nT)= > h(kT)x(nT — kT)

k=—o00

A Hence

y(nT)[=| Y_ h(kT)x(nT —kT)| < > |h(kT)-x(nT—kT)|

k=—00 k=—00

=] = = = E DA



i h(kT)x(nT — kT)

k=—o00

< i \h(KT) - x(nT — KT)]

k=—o00

ly(nT)| =

A For example,
‘22-3 + (—1)-4+2-(—2)+(—3)-(—3)‘ =7

< D23+ [(=1) 4]+ [2- (=) +[(=3) - (~3)| = 23

=] = = E E DHAC



i h(kT)x(nT — kT)

k=—o00

< i [A(kT) - x(nT — kT)|

k=—o00

ly(nT)| =

A For example,
‘22-3 + (—1)-4+2-(—2)+(—3)-(—3)‘ =7

< D23+ [(=1) 4]+ [2- (=) +[(=3) - (~3)| = 23

If [x(nT)| < P<oo for alln

we have ly(nT)| < P Z |h(kT)|

k=—00

=] = = E E DHAC



A C y(nT)| < | Z \h(KT)|
k=— J
learly, if

then

S [A(KT)| < o0
k=00

ly(nT)] < oo for all n



y(nT)[ < P Y |h(kT)|
k=—00
A Clearly, if

then

> |h(kT)| <
k=—00
ly(nT)| < oo for all n
stability.

A Therefore, Eq. (B) constitutes a sufficient condition for



A A discrete-time system can be classified as stable if and only if its

response is bounded for all possible bounded excitations.
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A A discrete-time system can be classified as stable if and only if its
response is bounded for all possible bounded excitations.

A Let us consider a bounded excitation of the form

if >
(T — kT = { P if h(kT) >0
—-P
where P is a positive constant.

if h(kT) <0



A A discrete-time system can be classified as stable if and only if its
response is bounded for all possible bounded excitations.

A Let us consider a bounded excitation of the form

if >
x(nT —kT)={ P iTAKT) =0
—P ifh(kT) <0
where P is a positive constant.
A From the convolution summation, we get

o

y(nT)| =

> x(nT — kT)h(kT)




A A discrete-time system can be classified as stable if and only if its

response is bounded for all possible bounded excitations.

A Let us consider a bounded excitation of the form

if >
(T — kT = { P if h(kT) >0
—-P
where P is a positive constant.

it h(kT) <0
A From the convolution summation, we get

o

y(nT)| =

A Hence

k=—o0

> x(nT — kT)h(kT)

()=

o
P-|h(KT) =P > |h(kT)|
k=—00 k=—o00
=] [ = E E DA
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y(nT)[ =P Y [|h(kT)|

k=—o00

A Evidently, at least for the type of signal under consideration,
the response will be bounded if and only if

k=—00

> |h(kT)| < oo

which implies that this condition is also a necessary condition
for stability.



A Summarizing, the condition

o0

> |h(kT)| <
k=—00

is both a necessary and sufficient condition for stability.



A Summarizing, the condition

o0

> |h(kT)| <

k=—0c0
is both a necessary and sufficient condition for stability.

A Note: In nonrecursive systems, the impulse response is both
finite in value and also of finite duration and hence the above

condition is always satisfied, i.e., nonrecursive systems are
always stable.



A first-order system is characterized by the equation
y(nT)=x(nT) + py(nT —T)
has an impulse response

Check the stability of the system.

h(nT) = u(nT)p"



A first-order system is characterized by the equation
y(nT)=x(nT) + py(nT —T)
has an impulse response

Check the stability of the system.
Solution We can write

h(nT) = u(nT)p"

k=—00

> IBKT) =1+ |p|+ -+ |p¥| + -



A first-order system is characterized by the equation
y(nT)=x(nT) + py(nT —T)
has an impulse response

Check the stability of the system.
Solution We can write

h(nT) = u(nT)p"

k=—00

> IBKT) =1+ |p|+ -+ |p¥| + -

This is a geometric series and has a sum

0 1 — |p|(n+1)
> |h(kT)| = lim el it
Bt n—oo 1 —|p|
= e = = = wae
TSl Digital Signal Processing — Secs. 4.6, 47



I p> 1,
Z |h(kT)| = lim %
P -

= |p|

—



I p> 1,
Z [A(kT)l = Jim %
N—00
k=—co
and if p=1,
o0

= |p|

=

D h(kT) =1+1+1+

—

o0



If p>1,
_ (n+1)
Z |h(kT)| = lim %
n—oo
k=—o00
and if p=1,
o0

— |pl
> AT =1+1+1+
k=—00

On the other hand, if p < 1

— 0

Z |h(kT)| =
k=—o00

(0.¢]

1— (n+1)
im Pl

n—o0
and only if

1
— =K <o
1—1p| 1—|p|
where K is a positive constant. Therefore, the system is stable if
/<1 m
o = = = = 9Dae
RS AvAReReW  Digital Signal Processing — Secs. 4.6, 47




A discrete-time system has an impulse response

h(nT) = u(nT)e®!"  sin o
Check the stability of the system.



A discrete-time system has an impulse response

h(nT) = u(nT)e®1"" sin o
Check the stability of the system.

Solution We can write

Yo Ih(nT) =
k=0

k=0

u(kT)e% kT sin

6
(o]
Z ‘eO.lkT n

k=3,9,15,...

i
>

k#3,9,15,...
Therefore, the system is unstable.



This slide concludes the presentation.
Thank you for your attention.



