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m A discrete-time system is stable if and only if its impulse
response is absolutely summable, i.e.,

> Ih(nT)| < 0
n=0
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Stability

m A discrete-time system is stable if and only if its impulse
response is absolutely summable, i.e.,

> [h(nT)| < o0
n=0

m Since the transfer function is the z transform of the impulse
response, we expect the stability of the filter to depend
critically on the transfer function.

It actually depends exclusively on the positions of the poles.
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function

m Consider a causal recursive system characterized by the transfer

) _ Ho Hi’\il(z —Z)m
D(z) H:\Izl(z ~ o)

where N > M
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Stability Cont'd

m Consider a causal recursive system characterized by the transfer
function

N(z) _ HoII1%\(z — z)™

- N .
D) TILi(z—pi)™
® The impulse response is given by the general inversion formula as
1

h(nT) = Z7'H(z) = 2 ]{ H(z)z" ' dz

H(z) = where N > M
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Stability Cont'd

m Consider a causal recursive system characterized by the transfer
function

N(z) _ Holliy(z — z)™
D) Tz —p)”

® The impulse response is given by the general inversion formula as

h(nT) = Z7'H(z) = % ]{ H(z)z" ' dz

where N> M

H(z) =

B By using the residue theorem, we have

N -1 _
h(nT) = ROA;{— D iiq reS s—p, [H(lz)z ] forn=20
doiiires —p[H(2)z" ] for n >0
where Ry =res ,— |:H(Z):|
z

if H(z)/z has a pole at the origin and Ry = 0 otherwise.
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Sta blllty Cont'd

® If we assume that H(z) has simple poles, i.e., nj =1 for
i=1,2, ..., N, then the impulse response can be expressed
as

SN P res L H(2) forn>0

i

h(nT) = {Ro + N pitres o H(z) for n=0

where the ith term in the summations is the contribution to
the impulse response due to pole p;.
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Sta blllty Cont'd

Z,N:l Pl res ,—p, H(2) for n>0

i

N1 _
h(nT) = {Ro + > P res —pH(z) forn=0

m If we let ‘
pi = ;e

then the impulse response can be expressed as
h(0)
h(nT) = .
(nT) {Zf\l_l r el Dvives ,_ H(z) forn>0
where
N .
h(0) = Ro + Z rteVires ,_pH(z) forn=0
i=1
is finite.
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Sta blllty Cont'd

h(0)
h(nT) = N ne1i(n1);
Yo e ires ;—p,H(z) forn>0

m We can now write

> |h(nT)| = Z
n=0 n=1

N

Z (n=D¥ives ,_, H(z)

=1
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m We note that

N N
Z |ith term| > Z ith term
i=1 i=1
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B The sum of the magnitudes of the complex numbers is

3
D lal = [(=1+j1)|+1(2+/2)|+](2—j1)| = V2+v8+/5 = 6.479
i=1

Complex plane

¢, =-1+4j1

~
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B On the other hand, the magnitude of the sum of the complex
numbers is given by

3
L
i=1
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= |(=14j1)+ (2+j2) + (2—j1)| = |3+,j2| = V13 = 3.606

c,=-1+j1

Complex plane

A. Antoniou
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|| Therefore'

3 3
Zlcfl 2 Zci
i—1

i=1

Complex plane

=2+j2
=141

a
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Stability Cont'd

N
Z r,”_lej(”_l)w" res ,—p,H(z)

i=1

> 1h(nT)| = [h(0)] +
n=0

n=1

® Thus we can write

th nT)| < [h(0 \+ZZ) n—1e/(n—Dvires . H(z )‘

n=1 i=1
< IO+ 303 [0 s (2
n=1 j=1
oo N
< 1A+ D" Ires o=p H(2)
n=1 i=1
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|z| =1, i.e.,

m Let us assume that all the poles are inside the unit circle

i< rmax <1 for i

1,2,...,N

z plane
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Stability Cont'd

m Now if pi is a simple pole of some function F(z), then
function (z — px)F(z) is analytic and, therefore, the residue of
F(z) at z = py is finite.

Frame # 13 Slide # 16 A. Antoniou Digital Signal Processing — Sec. 5.3



Stability Cont'd

m Now if pi is a simple pole of some function F(z), then
function (z — px)F(z) is analytic and, therefore, the residue of
F(z) at z = py is finite.

m Consequently, all the residues of H(z) are finite and so
res ;—p,H(z)| < Rmax for i=1,2, ..., N

where Rnax is a positive constant.

Frame # 13 Slide # 17 A. Antoniou Digital Signal Processing — Sec. 5.3



m From the previous two slides

ri < fmax <1 for i
and

1,2, ..., N
|res z:p,-H(z)‘ < Rimax

for i=1, 2,

N

Frame # 14 Slide # 18

«O> «Fr «=r» « > A
A. Antoniou  Digital Signal Processing — Sec. 5.3



Stability Cont'd

m From the previous two slides
P <rfmax <1l for i=1,2, ..., N

and
res ;—p,H(z)| < Rmax for i=1,2,..., N

m Therefore, we can write

00 o N
DT < [h(O)[ + DY ' res o=p H(2))|
n=0

n=1 j=1

o0
< [h(0)| + NRmax Y _ rnar
n=1
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Stability Cont'd

o oo
> B(nT)| < |A(0)] + NRmax Y _ et
n=0 n=1

m The sum at the right-hand side is a geometric series with
common ratio rmax and since we have assumed that rpax < 1,
the series converges.
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Stability Cont'd

o oo
> B(nT)| < |A(0)] + NRmax Y _ et
n=0 n=1

m The sum at the right-hand side is a geometric series with
common ratio rmax and since we have assumed that rpax < 1,
the series converges.

m We, therefore, conclude that

> Ih(nT)| < oo
n=0
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Sta blllty Cont'd

m Summarizing, we have assumed that all the poles are inside
the unit circle, i.e.,

i< tmax <1 for i=1,2,..., N

and demonstrated that in such a case the impulse response is
absolutely summabile, i.e.,

> A(nT)| < oo
n=0
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Sta blllty Cont'd

m Summarizing, we have assumed that all the poles are inside
the unit circle, i.e.,

< tpax <1 for i=1,2,..., N

and demonstrated that in such a case the impulse response is
absolutely summabile, i.e.,

> A(nT)| < oo
n=0

m Therefore, we conclude that if all the poles are inside the unit
circle, the system is stable.

Frame # 16 Slide # 23 A. Antoniou Digital Signal Processing — Sec. 5.3



Stability Cont'd

m One more thing needs to be done in order to fully establish
the role of the pole positions on the stability of the system.
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Stability Cont'd

m One more thing needs to be done in order to fully establish
the role of the pole positions on the stability of the system.

m The condition established so far is a sufficient condition and
one may, therefore, ask: Is it possible for a system to be stable
if one or more poles are located on or outside the unit circle?
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® Let us assume that a single pole of H(z), say pole py, is
located on or outside the unit circle, i.e., r, > 1.
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Stability Cont'd

® Let us assume that a single pole of H(z), say pole py, is
located on or outside the unit circle, i.e., ry > 1.

® In such a case, as n — oo we have

N
h(nT) = Zri”fle"(”_lw"res 2=p H(2)
i=1

~ r,f_lej(”_l)wk res ,—p, H(z)

since for a large value of n, rl.”_1 — 0 for all i # k for which

ri < 1 whereas r,f_l is unity or becomes very large since
ri > 1.
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| | Thus

oo N |
SO AT 2 30 [0 es 1y, ()
n=0 2

o0
~ [res z—p, H(2)| Y ri 7!
n=0
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Stability Cont'd
® Thus
S IR~ 3 i | fres o, HI2)
n=0 n=0
~ lres o—p H(2)| > it
n=0

m Since ri > 1, the sum at the right-hand side does not
converge, i.e., the impulse response is not absolutely
summable, i.e.,

Z |h(nT)| — oo
n=0

and the system is unstable.
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Stability Cont'd

®m Therefore, we conclude that a discrete-time system is stable if and
only if all its poles are inside the unit circle of the z plane.

jimz z plane

T Regions of

instability

Re z

Region of
stability

Note: Nonrecursive discrete-time systems are always stable since
their poles are always located at the origin of the z plane.
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Check the following system for stability:

X ——(F)

®

o Y(2)

Tk
®
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Solution The transfer function of the system can be easily

obtained as
22— z41
H = =
(2) z2—740.5
- 22—z+1
(z=p1)(z = p2)
where _
P, p2 =3 Ej5= e
Since

Ip1], |p2| <1

the system is stable. m
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Stability Criteria

m Stability criteria are simple techniques that can be used to
determine whether a system is stable or unstable with minimal
computational effort.
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Stability Criteria

m Stability criteria are simple techniques that can be used to
determine whether a system is stable or unstable with minimal
computational effort.

m Consider a system characterized by the transfer function

o g
where
M N
N(z) = Z aiz=" and D(z) = Z bizN~
i=0 i=0
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Stability Criteria Cont'd

m As was demonstrated in previous slides, the stability of a
discrete-time system can be determined by finding the poles
of the transfer function, namely, the roots of the denominator
polynomial D(z).
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Stability Criteria Cont'd

m As was demonstrated in previous slides, the stability of a
discrete-time system can be determined by finding the poles
of the transfer function, namely, the roots of the denominator
polynomial D(z).

m For a second- or a third-order system this is easily done.
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Stability Criteria Cont'd

m As was demonstrated in previous slides, the stability of a
discrete-time system can be determined by finding the poles
of the transfer function, namely, the roots of the denominator
polynomial D(z).

m For a second- or a third-order system this is easily done.

m For higher-order systems, we need to use a computer program

that would evaluate the roots of a polynomial, for example,
MATLAB.
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Stability Criteria Cont'd

m As was demonstrated in previous slides, the stability of a

Frame # 24

discrete-time system can be determined by finding the poles
of the transfer function, namely, the roots of the denominator
polynomial D(z).

For a second- or a third-order system this is easily done.

For higher-order systems, we need to use a computer program
that would evaluate the roots of a polynomial, for example,
MATLAB.

Alternatively, we can use one of several stability criteria.
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Stability Criteria Cont'd

m Common factors in N(z) and D(z) do not have anything to
do with stability because they can be canceled out.
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Stability Criteria Cont'd

m Common factors in N(z) and D(z) do not have anything to
do with stability because they can be canceled out.

m For example, if N(z) and D(z) have a common factor
(z + w), then

N(z) _ (z+w)N'(2) _ N'(z)

D(z) (z+w)D'(z) D'(z)

H(z) =

In effect, the poles of H(z) are the roots of D'(z) and
parameter w will not appear in the impulse response.
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m If there are common factors, they must be removed.
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Test for Common Factors

m [f there are common factors, they must be removed.

B To test a transfer function

) N(z) Zil\lo a;zM-i
H2) = D) = SV b

for common factors, an (M + N) x (M + N) matrix is constructed
and its determinant is evaluated where M and N are the numerator
and denominator degrees, respectively.
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Test for Common Factors

m If there are common factors, they must be removed.

B To test a transfer function

) N(z) Zil‘io a;zM-i
H2) = D) = SV b

for common factors, an (M + N) x (M + N) matrix is constructed
and its determinant is evaluated where M and N are the numerator
and denominator degrees, respectively.

B If the determinant of this matrix is zero, then there are common
factors. (See Sec. 5.3.4 of textbook for details.)
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Test for Common Factors

m If there are common factors, they must be removed.

B To test a transfer function

Hz) = M@ _ T a2

D)~ S bzh

for common factors, an (M + N) x (M + N) matrix is constructed
and its determinant is evaluated where M and N are the numerator
and denominator degrees, respectively.

B If the determinant of this matrix is zero, then there are common
factors. (See Sec. 5.3.4 of textbook for details.)

m Hereafter, we assume that N(z) and D(z) do not have any common
factors.
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the Nyquist and Routh-Hurwitz criteria.

m The classical stability criteria for continuous-time systems are
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Stability Cont'd

m The classical stability criteria for continuous-time systems are
the Nyquist and Routh-Hurwitz criteria.

m Corresponding criteria that can be used to check the stability
of discrete-time systems and digital filters are the following:
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Sta blllty Cont'd

m The classical stability criteria for continuous-time systems are
the Nyquist and Routh-Hurwitz criteria.

m Corresponding criteria that can be used to check the stability
of discrete-time systems and digital filters are the following:

— Schur-Cohn criterion (1922)
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Sta blllty Cont'd

m The classical stability criteria for continuous-time systems are
the Nyquist and Routh-Hurwitz criteria.

m Corresponding criteria that can be used to check the stability
of discrete-time systems and digital filters are the following:

— Schur-Cohn criterion (1922)
— Schur-Cohn-Fujiwara criterion (1925)
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Stability Cont'd

m The classical stability criteria for continuous-time systems are
the Nyquist and Routh-Hurwitz criteria.

m Corresponding criteria that can be used to check the stability
of discrete-time systems and digital filters are the following:
— Schur-Cohn criterion (1922)
— Schur-Cohn-Fujiwara criterion (1925)
— Jury-Marden criterion (1962)
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Schur-Cohn Stability Criterion

m For an Nth-order system, N matrices of dimensions ranging
from 2 x 2 to 2N x 2N are constructed using the coefficients
of D(z).
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Schur-Cohn Stability Criterion

m For an Nth-order system, N matrices of dimensions ranging
from 2 x 2 to 2N x 2N are constructed using the coefficients
of D(z).

m The determinants of these matrices, say, D1, D>, ..., Dy, are
computed and their signs are determined.
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Schur-Cohn Stability Criterion

m For an Nth-order system, N matrices of dimensions ranging
from 2 x 2 to 2N x 2N are constructed using the coefficients
of D(z).

m The determinants of these matrices, say, D1, D>, ..., Dy, are
computed and their signs are determined.

m The system is stable if and only if

D, <0 for odd k and D, >0 for even k
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m The Schur-Cohn-Fujiwara criterion is much more efficient.
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Schur-Cohn-Fujiwara Stability Criterion

m The Schur-Cohn-Fujiwara criterion is much more efficient.

m It involves only one matrix of dimension N x N, which is
again constructed using the coefficients of D(z).
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Schur-Cohn-Fujiwara Stability Criterion

m The Schur-Cohn-Fujiwara criterion is much more efficient.

m It involves only one matrix of dimension N x N, which is
again constructed using the coefficients of D(z).

m The test amounts to checking whether the matrix is positive
definite.
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Schur-Cohn-Fujiwara Stability Criterion

m The Schur-Cohn-Fujiwara criterion is much more efficient.

m It involves only one matrix of dimension N x N, which is
again constructed using the coefficients of D(z).

m The test amounts to checking whether the matrix is positive
definite.

m This is based on the Schur-Cohn criterion.
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criteria.

m The Jury-Marden criterion is the most efficient of the three
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Jury-Marden Stability Criterion

m The Jury-Marden criterion is the most efficient of the three
criteria.

m [t involves the computation of a number of 2 x 2
determinants.
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Jury-Marden Stability Criterion

m The Jury-Marden criterion is the most efficient of the three
criteria.

m [t involves the computation of a number of 2 x 2
determinants.

m This is also based on the Schur-Cohn criterion.
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® Assumptions:
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m Assumptions:

— The denominator of the transfer function is given by

=

D(z) = Z bizN=
where by > 0.

i=0
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Jury-Marden Stability Criterion Cont'd

m Assumptions:
— The denominator of the transfer function is given by

D(z) =) bizV

1M

where by > 0.

— The numerator and denominator polynomials of the transfer
function, N(z) and D(z), do not have any common factors.
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Jury-Marden Stability Criterion Cont'd

m Assumptions:
— The denominator of the transfer function is given by

D(z) =) bizV

1M

where by > 0.

— The numerator and denominator polynomials of the transfer
function, N(z) and D(z), do not have any common factors.

m The first assumption that by > 0 simplifies the Jury-Marden
stability criterion but it is not a limitation.
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Jury-Marden Stability Criterion Cont'd

m If by < 0 then we can multiply the numerator and
denominator polynomials by —1 to get a positive by.
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Jury-Marden Stability Criterion Cont'd

m If by < 0 then we can multiply the numerator and
denominator polynomials by —1 to get a positive by.

m This does not change the pole positions.
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Jury-Marden Stability Criterion Cont'd

m If by < 0 then we can multiply the numerator and
denominator polynomials by —1 to get a positive by.

m This does not change the pole positions.

m For example, if

N 24+2z+1
Hz) = (z): z° 4+ 2z +
D(z) —2z2+0.8z—-0.4
we can write
H(z) = (22+2z+1)(-1) = -z2-2z-1 _ N'(z)
“) T (22221082 —04)(—1) 222-082z+04 D/(z)

where D’(z) has a positive by.
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Jury-Marden Stability Criterion Cont'd

Row H Coefficients
1 bo by by bs <o+ by_2 by-1 b
2 by  by-1 by—> by_z - by by bo
3 o a o)) CN—3 CN—2 CN—1
4 cN—-1 CnN—2 CN-—3 - C a Co
5 do di do - dy-z dnvo2
6 dv—> dy—3 dy—a - di do

2N -3 h n r

where
| bi by|_|bo by-; _
G = ‘bN—i bo | = | by by for 0,1,...,N—-1
d=| G N D NI g 01, N =2
Cn—1—i Co CN—-1 Ci
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Jury-Marden Stability Criterion Cont'd

m The Jury-Marden stability criterion states that polynomial
D(z) has roots inside the unit circle of the z plane (i.e., the
filter is stable) if and only if the following conditions are
satisfied:
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Jury-Marden Stability Criterion Cont'd

m The Jury-Marden stability criterion states that polynomial
D(z) has roots inside the unit circle of the z plane (i.e., the
filter is stable) if and only if the following conditions are
satisfied:

(i)
D(1)>0
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Jury-Marden Stability Criterion Cont'd

m The Jury-Marden stability criterion states that polynomial
D(z) has roots inside the unit circle of the z plane (i.e., the
filter is stable) if and only if the following conditions are
satisfied:

(i)
(i)

D(1)>0

(-1)VD(~-1) >0
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Jury-Marden Stability Criterion Cont'd

m The Jury-Marden stability criterion states that polynomial
D(z) has roots inside the unit circle of the z plane (i.e., the
filter is stable) if and only if the following conditions are

satisfied:
(i)
D(1)>0
(i)
(-1)VD(~-1) >0
(iii)
bo > |bn]
|co| > [en—1]
|do| > |dn-—2]
Iro| > [r2
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A discrete-time system is characterized by the transfer function

74

T4 4381222 +z+1

H(z)

Check the filter for stability.

The denominator polynomial of the transfer function is
given by
D(z) = 4z* +322 4222 + z 4+ 1

Since
D(1)=11>0 and (-1)*D(-1)=3>0

conditions (i) and (ii) of the test are satisfied.
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Jury-Marden array:

Row H Coefficients

1 4 3 2 1 1
2 1 1 2 3 4
3 15 11 6 1

4 1 6 11 15
5 224 159 79

Since

bo > |ba|, |co|l > |cs|, |do| > |da]

condition (iii) is also satisfied and the filter is stable. ~m
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A discrete-time system is characterized by the transfer function

22+2z+1
7% +6234+322+47+5

H(z) =

Check the filter for stability.

The denominator polynomial of the transfer function is given
D(z)=z*+62° +32°+4z+5
In this example,
(-1)*D(~1) = -1

Therefore, condition (ii) of the test is violated and the filter is
unstable. =

Note: Note that there is no need to construct the Jury-Marden array!
Violating only one of the conditions is enough to demonstrate that the
filter is unstable.
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This slide concludes the presentation.
Thank you for your attention.

Frame # 38 Slide # 75 A. Antoniou Digital Signal Processing — Sec. 5.3



