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Introduction

®m Various time-domain and frequency-domain relationships exist
between continuous-time and discrete-time signals.
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®m Various time-domain and frequency-domain relationships exist
between continuous-time and discrete-time signals.

B These relationships are developed by defining a special class of
signals known as impulse-modulated signals which comprise
sequences of continuous-time impulse functions.
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duction

®m Various time-domain and frequency-domain relationships exist
between continuous-time and discrete-time signals.

B These relationships are developed by defining a special class of
signals known as impulse-modulated signals which comprise
sequences of continuous-time impulse functions.

B |mpulse-modulated signals are essentially continuous-time signals
but simultaneously they are also sampled signals.

Therefore, on the one hand, they have Fourier transforms and, on
the other, they can be represented by z transforms.

Consequently, impulse-modulated signals can serve as a
mathematical bridge between continuous-time and discrete-time
signals that facilitates the derivations of the various relationships
between the two classes of signals.
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Impulse-Modulated Signals

® An impulse modulated-signal, denoted as X(t), can be
generated by sampling a continuous-time signal x(t) using an
ideal impulse modulator.

Impulse modulator

x(t) o— X o x() (@)

!

c(r)
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Impulse-Modulated Signals cont'd

B An impulse modulator is characterized by the equation

X(t) = c(t)x(t)

where ¢(t) is a carrier given by

c(t) = Z 5(t —nT)

n=—oo
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Impulse-Modulated Signals cont'd

B An impulse modulator is characterized by the equation
R(t) = c(t)x(t)
where ¢(t) is a carrier given by
c(t) = Z 5(t —nT)
n=—oo

m Hence

() =x(t) > &(t—nT)

n=—0o0
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Impulse-Modulated Signals cont'd

B An impulse modulator is characterized by the equation

X(t) = c(t)x(t)

where ¢(t) is a carrier given by

c(t) = Z 5(t —nT)

n=—oo

m Hence -
() =x(t) > &(t—nT)
n=—oo
® From the properties of the unit impulse function, we get

o

%(t)= Y x(nT)s(t—nT)

n—=—0oo
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Impulse-Modulated Signals cont'd

The input and output of an impulse modulator are as follows:

x(1)
\//Tkh

(b)
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Relationship between Impulse-Modulated and

Discrete-Time Signals

m Impulse-modulated signals are sequences of continuous-time
impulses.
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Relationship between Impulse-Modulated and

Discrete-Time Signals

m Impulse-modulated signals are sequences of continuous-time
impulses.

m They can be converted to discrete-time signals by replacing
impulses by numbers.
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Relationship between Impulse-Modulated and

Discrete-Time Signals

m Impulse-modulated signals are sequences of continuous-time
impulses.

m They can be converted to discrete-time signals by replacing
impulses by numbers.

m On the other hand, impulse-modulated signals can be obtained
from discrete-time signals by replacing numbers by impulses.
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Relationship between Impulse-Modulated and

Discrete-Time Signals Cont'd
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Relationship between Fourier Transform and Z Transform

m An impulse-modulated signal is both a continuous-time as well
as a sampled signal, as was stated earlier, and this dual
personality will immediately prove very useful.
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Relationship between Fourier Transform and Z Transform

m An impulse-modulated signal is both a continuous-time as well
as a sampled signal, as was stated earlier, and this dual
personality will immediately prove very useful.

m As a continuous-time signal, an impulse-modulated signal has
a Fourier transform given by

X(jw) =F Y x(nT)s(t—nT)= > x(nT)Fs(t—nT)
= Z x(nT)e @’
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Relationship between Fourier Transform and Z Transform

Cont'd

o0

X(jw)= Y x(nT)e "

n=—o00
B Therefore, from the definition of the z transform we note that

A

X(jw) = Xp(2)

z—ejwT

where
Xp(z) = Zx(nT) (A)
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Relationship between Fourier Transform and Z Transform

Cont'd

o0

X(jw)= Y x(nT)e "

n=—o00
B Therefore, from the definition of the z transform we note that

A

X(jw) = Xp(2)

where
Xp(z) = Zx(nT) (A)

m In effect, the Fourier transform of impulse-modulated signal %(t) is
numerically equal to the z transform of the corresponding
discrete-time signal x(nT) evaluated on the unit circle |z| = 1.
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Relationship between Fourier Transform and Z Transform

Cont'd

o0

X(jw)= Y x(nT)e "

n=—o00
B Therefore, from the definition of the z transform we note that

A

X(jw) = Xp(2)

where
Xp(z) = Zx(nT) (A)

m In effect, the Fourier transform of impulse-modulated signal %(t) is
numerically equal to the z transform of the corresponding
discrete-time signal x(nT) evaluated on the unit circle |z| = 1.

® In other words, the frequency spectrum of X(t) is equal to that of
x(nT).
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The continuous-time signal

fort < —35s

for -3.5<t< -25
for =25 <t<?25
for25 <t <35

for t > 3.5

X
—~~
~
p—
Il
O = N = O

is subjected to impulse modulation.

Find the frequency spectrum of X(t) in closed form assuming a
sampling frequency of 27 rad/s.

Frame # 10 Slide # 19 A. Antoniou Digital Signal Processing — Secs. 6.4, 6.5



Example Cont'd

Solution The frequency spectrum of an impulse-modulated signal, X(t),
can be readily obtained by evaluating the z transform of x(nT) on the
unit circle of the z plane.

The impulse-modulated version of x(t) can be expressed as
R(t) = 0(t+3T)+25(t +2T) 4+ 20(t + T) +26(0)
+20(t — T)+25(t —2T) +6(t —3T)
where T =1s.

A corresponding discrete-time signal can be obtained by replacing
impulses by numbers as

x(nT) = §(nT +3T)+25(nT +2T) +25(nT + T) + 26(0)
+26(nT — T) +28(nT —2T) +6(nT — 3T)

Hence XD(Z) = Zx(t) = 23 + 222 + 221 + 24+ 22*1 + 2272 4 273

Frame # 11 Slide # 20 A. Antoniou Digital Signal Processing — Secs. 6.4, 6.5



Example Cont'd

Xp(z) = Z2x(t) =22 +222 + 228 + 242771 42272+ 273

Since the frequency spectrum of an impulse-modulated signal is
given by .
X(jw) = Xp(e™T)

we get
X(jw) = Xp(eT)
— (ej3wT+e—j3wT)+2(eijT+e—j2wT)
+2(eij+e—ij)+2
=2cos3wT +4cos2wT +4coswT +2 m
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The continuous-time signal

is subjected to impulse modulation.

Find the frequency spectrum of X(t) in closed form assuming a
sampling frequency of 27 rad/s.
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Example Cont'd

Solution A discrete-time signal can be readily derived from x(t) by
replacing t by nT as

1, . .
x(nT) = u(nT)e ""sin2nT = u(nT)e " x 2—j(e12”T — e 2T
LoonT(=14i2) _ nT(-1-j2
:u(nT)z—j(e (=1472) _ nT( J))

Since T = 27/ws = 1 s, the table of z transforms gives

1 z z
Xp(z) = 2 (Z_ P R e—l—jZ)

and after some manipulation

ze Llsin2
Xp(z) =

z2 —2ze~lcos2 +e2
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Example Cont'd

ze 1sin2
72 —2ze lcos2 + e2
Since the frequency spectrum of an impulse-modulated signal is
given by

XD(Z) =

X(jw) = Xp(e/T)
we get

e/“~lsin?2
e2iw — 2ajw—1 cos2 + 2

X(jw) = Xp(eT) =
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Poisson’'s Summation Formula

m As may be expected, the spectrum of a discrete-time signal
must be related to that spectrum of the continuous-time
signal from which it was derived.
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Poisson’'s Summation Formula

m As may be expected, the spectrum of a discrete-time signal
must be related to that spectrum of the continuous-time
signal from which it was derived.

m This relationship can be established by using Poisson's
summation formula.
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Poisson’'s Summation Formula cont'd

= Consider a signal x(t) with a Fourier transform X(jw).

Poisson’s summation formula states that

(e 9]

Z x(t+nT) = Z X(jnws) e’”“’s

n—=—oo n—=—oo

where ws =27/ T.
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Poisson’'s Summation Formula cont'd

= Consider a signal x(t) with a Fourier transform X(jw).

Poisson’s summation formula states that

(e 9]

Z x(t+nT) = Z X(jnws) e’”“’s

n—=—oo n—=—oo

where ws =27/ T.
m If t =0 and x(t) is a two-sided signal, we have

[e.e]

S ) =5 3 X(nes) (®)
T

n=—0o0 n=—o0
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Poisson’'s Summation Formula cont'd

o0

> x(t+nT)= Z X (jnws ) et

n=—0oo n=—0oo

® If t =0 and x(t) is a right-sided signal, i.e., x(t) = 0 for

t < 0, then
ad x(0+ 1 — _
Zx(nT) = (2 + - Z X (jnws)
n=0 n=—o00
where (0-) £ x(04)  x(04)
x(0—) + x(0+ x(0+
Jim x(t) 2 T2
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Poisson’'s Summation Formula cont'd

o0

> x(t+nT)= Z X (jnws ) et

n=—0oo n=—0oo

® If t =0 and x(t) is a right-sided signal, i.e., x(t) = 0 for
t < 0, then

Zx(nr):x((;r +% 3 X(jmws)
n=0 =

where

Jimx(t) = 2 T2
m Note: In Fourier analysis, the value of a time function at a
discontinuity is always taken to be the average of the left and
right limits (see textbook).
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Poisson’'s Summation Formula cont'd
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Spectral Relationship between Discrete-Time and

Continuous-Time Signals

= Given a continuous-time signal x(t) with a Fourier transform
X(jw), then from the frequency-shifting theorem we have

x(t)e ™0t & X (jwo + jw)
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Spectral Relationship between Discrete-Time and

Continuous-Time Signals

= Given a continuous-time signal x(t) with a Fourier transform
X(jw), then from the frequency-shifting theorem we have

x(t)e ™0t & X (jwo + jw)

m From Poisson’s summation formula, we get

o0

: 1 « . .
Z X(nT)e_JWO”T:? Z X(jwo + jnws)

n=—00 n=—00
where ws = 27/ T and if we now replace wg by w, we deduce
the important relationship

o0

. 1 &
Z x(nT)e*Jw"T:7 Z X(jw + jnws)

n=—oo n=—0o0

Frame # 20 Slide # 33 A. Antoniou Digital Signal Processing — Secs. 6.4, 6.5



Spectral Relationship Cont'd

o0 . 1 o0
Z x(nT)e el = — Z X(jw + jnws)

n=—oo n=—oo

B |t was shown earlier that

X(jw) = Xp(eT) = > x(nT)e T
and hence X(jw) = Xp(e*T) = Z X(jw + jnws)

m Therefore, the frequency spectrum of the impulse-modulated signal
X(t) is numerically equal to the frequency spectrum of discrete-time
signal x(nT) and the two can be uniquely determined from the
frequency spectrum of the continuous-time signal x(t), namely,
X(jw).
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Spectral Relationship Cont'd

m As is to be expected, )?(jw) is a periodic function of w with
period ws since the frequency spectrum of discrete-time
signals is periodic.
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Spectral Relationship Cont'd

m As is to be expected, )?(jw) is a periodic function of w with
period ws since the frequency spectrum of discrete-time
signals is periodic.

m To check this out, we can replace jw by jw + jmws in

() == 3 XCiwo+ j)

n=—o00
to obtain

A~

Koo+ jimos) = = 32 Xljio + j(m + n)d]

I o
=T Z X(jw + jn'ws) = X(jw)
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Spectral Relationship Cont'd

m For a right-sided signal, x(t) = 0 for t < 0—, and hence the
impulse-modulated signal assumes the form

X(t)=>» x(nT)§(t —nT)

where x(0) = x(0+).
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Spectral Relationship Cont'd

m For a right-sided signal, x(t) = 0 for t < 0—, and hence the
impulse-modulated signal assumes the form

X(t)=>» x(nT)§(t —nT)

where x(0) = x(0+).

B The Fourier transform of the signal is given by

X(@w) =Y x(nT)e T = Xp(e/“T)
n=0
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Spectral Relationship Cont'd

m For a right-sided signal, x(t) = 0 for t < 0—, and hence the
impulse-modulated signal assumes the form

X(t)=>» x(nT)§(t —nT)

where x(0) = x(0+).

B The Fourier transform of the signal is given by
X(jw) =Y x(nT)e T = Xp(e~T)

n=0
® Thus Poisson's summation formula gives

x(0+)

X(jw) = Xp(e*T) = 5

—|— — Z X(jw + jows)  (C)

n—=—oo
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Spectral Relationship Cont'd

x(0+)
2

+% > X(jw+jnws)  (Q)

n=—0o0

X(jw) = Xp(e“T) =

m By letting jw = s and €7 = z, Eq. (C) can be expressed in
the s domain as
x(0+)

X(s) = Xol2) = 2 +% S X(s + jinws)

n—=—oo

where X(s) and X(s) are the Laplace transforms of x(t) and
X(t), respectively.
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Spectral Relationship Cont'd

x(0+)
2

X(jw) = Xp(eT) = +% > X(jw+jnws)  (Q)

n——oo
m By letting jw = s and €7 = z, Eq. (C) can be expressed in
the s domain as
x(0+)

X(s) = Xol2) = 2 +% S X(s + jinws)

where X(s) and X(s) are the Laplace transforms of x(t) and
X(t), respectively.

m This relationship will be used in Chap. 11 to design digital
filters based on analog filters.
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Find X(jw) if x(t) = coswot.

Solution From the table of Fourier transforms (Table 6.2), we have
X(jw) = F coswgt = m[6(w + wp) + d(w — wo)]

Hence Poisson’s summation formula, i.e.,

X(jw) = Xp(e“T) = Z X(jw + jnws)
gives
X(jw) = ; nz_:oo[a(w + nws + wo) 4 6(w + nws — wp)] =
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Example Cont'd

|X(j)|

|

—w, Wy Wy 2w

(@)
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Find X(jw) if x(t) = u(t)et.

Solution From the table of Fourier transforms (Table 6.2),

1

X(jw) = Flu(t)e 1= 157,

Since x(t) = 0 for t < 0 in this case, we need to use the second form of
Poisson’s summation formula, i.e.,

(0+ +l Z X(jw + jnws)

n=—o0

X(jw) = Xp(eT) =

The initial-value theorem of the Laplace transform gives

=1

x(0+) = fim [sX(s)] = lim J——

1 — 1
% R
and hence (jw) = T ;OO 1+ j(w + nws)
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Example Cont'd

0.6
0.4
0.2

[X(jeo)|
~

3N
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This slide concludes the presentation.
Thank you for your attention.
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