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B Another approach to the realization of digital filters is to start with
the state-space characterization:

q(nT + T) = Aq(nT) +bx(nT)
y(nT) = c"q(nT) + dx(nT)

B The state-space equations can be written as

N
Gi(nT+T) = Za;jqj(nT) + bix(nT) for i=1,2,..., N
j=1
N
y(nT) = 3" gay(nT) + dox(nT)

j=1

B A realization can now be obtained by converting the signal flow
graph for the state-space equations into a network.
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Example

A discrete-time system can be represented by the state-space
equations

qQ(nT+T) = Aq(nT)+bx(nT)
y(nT) = c’q(nT)+ dx(nT)

where

A= ™ Ol b M e ™M d22
0 mo 1 mo

Obtain a state-space realization.



Example Cont'd

For a general second-order system, we have

a a b C
A— |91 12,b: 1,c: l,d:do
az1 ax bo o
Hence the state-space equations can be expressed as

ql(nT + T) = allql(nT) =+ algqg(nT) + blx(nT)
qg(nT + T) = azlql(nT) + 822q2(nT) + ng(nT)
y(nT) = cagi(nT) + c2(nT)g2(nT) + dx(nT)



Signal flow graph:

¢ (nT+T)

q>(nT)
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Example Cont'd

For the problem at hand, we have

ain=my, ai2=0, a1 =0, axp=m
bh=1 b=1 a=m, c=m, d=2
The required network can be obtained by replacing summing nodes

by adders, distribution nodes by distribution nodes, and
transmittances by multipliers and unit delays as appropriate. =
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m State-space structures tend to require more elements.
m However, they also offer certain advantages, as follows:

— Reduced signal-to-noise ratios can be achieved.

— A certain type of oscillations due to nonlinearities, known as
parasitic oscillations can be eliminated in these structures (see
Chap. 14).



m The lattice method was proposed by Gray and Markel and it is
based on the configuration shown.
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m A transfer function of the form

NN Spaz
1) =50 = 1+ bz

can be realized by applying a step-by-step recursive algorithm
comprising N iterations to obtain a series of polynomials of the form

j
(z):Zaﬁz—" and Dj(z) = Zﬂf’
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for j=N,N—1,...,0.



m A transfer function of the form

NN Spaz
1= D) - 1+ Y0, bz

can be realized by applying a step-by-step recursive algorithm
comprising N iterations to obtain a series of polynomials of the form

j
(z):Zaﬁz—" and Dj(z) = ZBJ,
i=0

for j=N,N—1,...,0.

B Then for each value of j the multiplier constants v; and p; are
evaluated using coefficients ay; and 3j; in the above polynomials.



1. Let Nj(z) = N(z) and Dj(z) = D(z) and assume that j = N,
that is

J N
NN(Z) = E ozj,'z_' = E ajz”!
i=0 i=0

J N
DN(Z) = Zﬁj,'z_i = Z b,'Z_i with by =1
i=0 i=0



J N N
Z) = Zaj,'z_’ = Za,-z_’ and D/\/ Zﬁj, Z biz™'
i=0 i=0 i=0

2. Obtain v}, pj, Nj—1(z), and Dj_1(z) for j = N, N —1,...,2 using
the following recursive relations:

vi = i by =B
j
Pi(z) = D C) 27 = Zﬂﬁziﬁ'
Nj-1(z) = Nj(z) Z%:

Dj-1(z) = Dj(Z)l__iingj(Z) = Zﬁjiz_
J i=0



3. Obtain v1, p1, and Ny(z) as follows:

n a1,

p1 = B
P1(Z) = D1 (1

;) z' = Bzt + Bu
No(z) = Ni(z) — v1P1(2) = ago
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3. Obtain vy, p1, and No(z) as follows:
vy = o1, p1 =P

Pi(z) = Dy <1> z7l =Bzt + Bu

V4

No(Z) = /Vl(Z) — I/1P1(Z) = Q00
4. Complete the realization by letting

Vg = Goo



Example

Realize the transfer function

ap + 31271 + 82272

14+ biz71 4+ byz=2

H(z) =

using the lattice method.
Solution

Step 1 We can write

—1 2 ~1 2
No(z) = apo + @212~ + oz " =ag+ a1z~ + a»z

Da(z) = Boo+ o1z L + Bz 2 =1+ biz ! + bpz 2



Example Cont'd

Step 2: For j = 2, we get

Vy = Q2 = az ,u2:522:b2

1
P>(z) = D> <z) 2=z 4 bzt by =Bz + Paz ' + B
Ni(z) = Nao(z) — 12Pa(z) = ap + a1zt faz?— 1/2(272 + bzt 4 by)
= a1o+anz !
Dy(z) — paPa(z) 1+ bzt + boz72 — pp(z72 + byz7 1 + by)
Dl(Z) = 1 2 = 1 2
H3 2
= B0+ Buz
where

o1 = ap — axby o1 = a1 — axby

by
=1 =
B1o , Bu s




Example Cont'd

Step 3 Similarly, for j = 1 we have

by
1+ by

v =oq1 =a1 —abt =P =

1
Pi(z) = D1 <z> z7t =Bzt + B
No(z) = Ni(z) — 1 Pi(z) = o + a1zt — v1(Broz ! + B11) = aoo

where
(a1 — a2b1) by

1+ by

ago = (ap — a2bp) —



Example Cont'd

Step 3 Similarly, for j = 1 we have

by
= = a1 — a b = =
%1 11 1 obr  p1 = Pu 1+ by

Pi(z) = D1 (i) z7t = Boz 7t + Bua

No(z) = Ni(z) — 1 Pi(z) = o + a1zt — v1(Broz ! + B11) = aoo

where ( b )b
o (a1 — a2b1)by
ago = (ap — a2b) 1t b

Step 4: Finally, step 4 gives

Vo = Qo



Example Cont'd

Summarizing, the multiplier constants for a general second-order
lattice realization are as follows:

(a1 — a2b1)by

- —aby) —
0 (ag — a2b) T+ b
v = a1 —ab, r=ap
by
M1 = t2 = bo

1+ by’



Example Cont'd

X(z) o——
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(b)
(a1 — axb1) by
vg = (ag— a — ="t~y =a; — ab
o = (ao — azhn) 116 » 1— axby
by
V= ay, 1 =7, lo=>by m

1+b



m A problem associated with the lattice configuration presented
is that it requires a large number of multipliers.
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m A problem associated with the lattice configuration presented
is that it requires a large number of multipliers.

m Fortunately, a more economical lattice structure is possible.

m It turns out that the 2-multiplier lattice module shown earlier
can be replaced by one of two 1-multiplier lattice modules as
shown in the next slide.
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® Parameters p; for j =1, 2, ..., N stay the same as before.

«O>r «fF»r < > < 3 Q>
A. Antoniou  Digital Signal Processing — Secs. 8.2.3-8.2.7
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~ vj
U= -2*
J é-]
where
1 forj=N
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m Parameters p; for j =1, 2, ..., N stay the same as before.

® However, parameters v/; need to be recalculated as

~ vj
U= -2*
J é-]
where
1 forj=N
& = N—1 )
Hi:j (1+5iﬂi+1) fOI’_jIO, 17"'7 N—-1

m Parameter ¢; takes the value of +1 or —1 depending on which
of the two 1-multiplier lattice modules is used.



m Consider an arbitrary number of filter sections connected in
cascade as shown and assume that the ith section is
characterized by

Yi(z) = Hi(2)Xi(2)

X(2) H,(z) Hy(z) |-~ Hy(2) 0 ¥(2)

X2 Y@ X5(2) ) Xy Yy (2)
(a)



m We can write

X(2) H,(2) Hy@) oo Hy® |——oy(y)

X;(2) Y@ X5(2) ) Xy Yy (@
(a)



m Therefore, the overall transfer function of a cascade
arrangement of filter sections is equal to the product of the
individual transfer functions, that is,

M
H(z) =] Hi(2)
i=1



m Therefore, the overall transfer function of a cascade
arrangement of filter sections is equal to the product of the
individual transfer functions, that is,

M
H(z) =] Hi(2)
i=1

m An Nth-order transfer function can be factorized into a
product of first- and second-order transfer functions of the
form

agi + a1zt

1+ byjz—1

aoi + a1;z 1 + agiz 2
14 byjz7t + byjz—2

H,'(Z) = and H,'(Z) =



m Therefore, the overall transfer function of a cascade
arrangement of filter sections is equal to the product of the
individual transfer functions, that is,

M
H(z) =] Hi(2)
i=1

m An Nth-order transfer function can be factorized into a
product of first- and second-order transfer functions of the
form

1

aop; + aiiz- aop; + a1zt + apiz?

H,'(Z) = and H,'(Z) =

1+ byz7t 14 byjz7t + byjz—2

m Each of these low-order transfer functions can be realized
using any one of the methods described.



For example, an arbitrary transfer function can be realized by
using a cascade arrangement of canonic sections as shown.

X(2) Hy(2) Hy(2) o Hy®@ by

X,(2) Yi(2) X5(2) Y5(2) Xy Yy (2)
(a)

,\'l(nT) o o )'i(l1T>




m Another realization comprising first- and second-order filter
sections is based on the parallel configuration shown.

X,(2) Yy(2)
! H,(2) !

X5(2) Yy(2)
X() Hy(2) +G—>_>_o @)

.

Xy(z Yy (2)
m(@) Hy) M




m We note that all the parallel sections have a common input,
e, X1(z) = Xo(2) = - = Xu(z) = X(2).
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m We note that all the parallel sections have a common input,

ie., X1(z) = Xao(2) = -+ = Xu(z) = X(2).
= Hence
Y(2) = Yi(2) + Ya(2) + - + Yu(z )
= Hi(2)X1(2) + Ha(2)Xa(2) + - - - + Hu(2) Xm(2)
= Hi(2)X(2) + Ha(z )X( )+ -+ Hu(2)X(2)
= [Hi(2) + Ha(2) + - + HM(Z)]X(Z)
= H(2)X(2)

where



Example

Obtain a parallel realization of the transfer function

10z* — 3.723 — 1.282%2 4+ 0.99~
(22 —z+0.34)(2%2 + 0.9z + 0.2)

H(z) =

using canonic sections.

The transfer function can be expressed as

4 3 2
H(z) = 10z 3.7z 1.28z7 4+ 0.99z

(z = p1)(z — p2)(z — p3)(z — pa)

where

p1,p2 = 0.5F 0.3
ps = —0.4
P4 = —-0.5



Example Cont'd

If we expand H(z)/z into partial fractions, we get

H(Z) Rl R2 R3 R4

7  7-05+j03 7-05-j03 7104 2105

where
Ri=1 R =1, R3=3, R;=5



Example Cont'd

If we expand H(z)/z into partial fractions, we get

H(Z) Rl R2 R3 R4
= - + - + +
z z—05+,03 z-05-403 z+04 =z405
where
Ri=1 R =1, R3=3, R;=5
Thus
H(z) = z z 3z 5z

= 7054403  7-05-03 2104  z+05



Example Cont'd

z z 3z bz

H =
(2)= 057703 " z—05-j03 " zr04 "z 105

Combining the first two and the last two partial fractions into
second-order transfer functions, we get

H(z) = Hi(z) + Ha(2)

2—z1 8+35z71

10342 M @) =109 00



Example Cont'd

z n z n 3z n ¥4
z—054+03 z—-05-403 =z+4+04 =z+05

H(z) =

Combining the first two and the last two partial fractions into
second-order transfer functions, we get

H(z) = Hi(z) + Ha(2)

271 and  Ho(2) 8+35z71
= Z) =
1-2z14034z2 2 1+09z1+02z2

Hl(Z)

Using canonic structures for the two second-order transfer functions, the
structure on the next slide is readily obtained.
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m Given a signal flow graph with inputs j =1,2, ..., J and
outputs k =1, 2, ..., K, a corresponding signal flow graph
can be derived by reversing the direction in each and every
branch such that the J input nodes become output nodes and
the K output nodes become input nodes.

o——o —
=0 N
>——o

1 2
Signal flow graph Transpose

T T T




m Given a signal flow graph with inputs j =1,2, ..., J and
outputs k =1, 2, ..., K, a corresponding signal flow graph
can be derived by reversing the direction in each and every
branch such that the J input nodes become output nodes and
the K output nodes become input nodes.

m The signal flow graph so derived is said to be the transpose of
the original signal flow graph.

1 2 J
Signal flow graph Transpose

T T T

Fo——o0 —
=0 N
>——o




m If a signal flow graph and its transpose are characterized by
transfer functions Hj(z) and Hj(z), respectively, then

Hi(z) = Hyi(2)



m If a signal flow graph and its transpose are characterized by
transfer functions Hj(z) and Hj(z), respectively, then
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m |n effect, given a digital-filter structure a corresponding
transpose structure can be obtained that has the same
transfer function.



m If a signal flow graph and its transpose are characterized by
transfer functions Hj(z) and Hj(z), respectively, then

Hik(z) = Hyj(2)

m |n effect, given a digital-filter structure a corresponding
transpose structure can be obtained that has the same
transfer function.

m Sometimes, the derived transpose structure has improved
features relative to the original structure.
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This slide concludes the presentation.
Thank you for your attention.



