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e As shown in Sec. 5.7 of the textbook, a nonlinear phase
response will introduce delay distortion.
«O>r «Fr «=)» « = E HAe
.~ Frame#2 Slide#2 A Antoniou Digital Signal Processing — Secs. 9.1, 9.2

v



Introduction

e As shown in Sec. 5.7 of the textbook, a nonlinear phase
response will introduce delay distortion.

e In certain filtering applications, delay distortion is highly
undesirable and in such applications digital filters are required
that have a linear-phase response.
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e As shown in Sec. 5.7 of the textbook, a nonlinear phase
response will introduce delay distortion.

e In certain filtering applications, delay distortion is highly
undesirable and in such applications digital filters are required
that have a linear-phase response.

e It turns out that linear-phase response can be easily achieved
by designing the required filter as a nonrecursive filter.
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e As shown in Sec. 5.7 of the textbook, a nonlinear phase
response will introduce delay distortion.

e In certain filtering applications, delay distortion is highly
undesirable and in such applications digital filters are required
that have a linear-phase response.

e It turns out that linear-phase response can be easily achieved
by designing the required filter as a nonrecursive filter.

e A linear-phase response is obtained by simply ensuring that
the impulse response satisfies certain symmetry conditions.
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Introduction

e As shown in Sec. 5.7 of the textbook, a nonlinear phase
response will introduce delay distortion.

e In certain filtering applications, delay distortion is highly
undesirable and in such applications digital filters are required
that have a linear-phase response.

e It turns out that linear-phase response can be easily achieved
by designing the required filter as a nonrecursive filter.

e A linear-phase response is obtained by simply ensuring that
the impulse response satisfies certain symmetry conditions.

e In this presentation, some basic properties of linear-phase
nonrecursive filters are examined.
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e A causal nonrecursive filter can be represented by the transfer
function

N-1
H(z) =Y h(nT)z""
n=0
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Constant Delay in Nonrecursive Filters

e A causal nonrecursive filter can be represented by the transfer

function
N—1

H(z)=> h(nT)z""

n=0

e lts frequency response is given by

H(ET) = M(w)e") = 3 h(nT)e /"

where

M(w) = |[H(e*T)| and 6(w) = arg H(e/*T)
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Constant Delay in Nonrecursive Filters cont'd

0(w) = arg H(eT)

e The absolute delay, which is also known as the phase delay,
and the group delay of a filter are given by

=" and 75 = —dZE:u)
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Constant Delay in Nonrecursive Filters cont'd

0(w) = arg H(eT)

e The absolute delay, which is also known as the phase delay,
and the group delay of a filter are given by

=" and 75 = —di(:))

e If both the phase and group delays are assumed to be
constant, then the phase response must be linear, i.e.,

1— Zy;ol h(nT)sinwnT

O(w) = —Tw =tan~
(«) Z’n";ol h(nT)coswnT

where T is a constant.
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Constant Delay in Nonrecursive Filters cont'd

1= ZL\:OI h(nT)sinwnT
Zg;ol h(nT)coswnT

f(w) = —Tw = tan™

e Hence
Zrlyz_ol h(nT)sinwnT
tanTw = =
Ym0 h(nT)coswnT
or
N—1
h(nT)(coswnT sinwt — sinwnT coswT) =0
n=0
and so

2
L

h(nT)sin(wr —wnT) =0

3
I
o
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Constant Delay in Nonrecursive Filters cont'd

=
L

h(nT)sin(wr —wnT) =0

Il
o

n
e The solution of the above equation can be shown to be
T=3(N-1)T

h(nT)=h[(N—1—-n)T] for 0<n<N-1
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Constant Delay in Nonrecursive Filters cont'd

=
L

h(nT)sin(wr —wnT) =0

i
o

e The solution of the above equation can be shown to be
T=3(N-1)T

h(nT)=h[(N—1—-n)T] for 0<n<N-1

e Therefore, a nonrecursive filter can be designed to have
constant phase and group delays over its entire baseband by
simply ensuring that its impulse response is symmetrical about
its center.
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Constant Delay in Nonrecursive Filters cont'd

e For even N, the impulse response is symmetrical about the
midpoint between samples (N —2)/2 and N/2 as shown:

1.0 — /Center of symmetry

N=10

h(nT) |

(@)
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Constant Delay in Nonrecursive Filters cont'd
e For odd N, the impulse response is symmetrical about sample
(N —1)/2 as shown:

Lo :/Center of symmetry

N=11

nT =10T
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Constant Delay in Nonrecursive Filters cont'd

e In most applications only the group delay needs to be
constant in which case the phase response can have the form

O(w) =6y — Tw

where 0 is a constant.
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Constant Delay in Nonrecursive Filters cont'd

e In most applications only the group delay needs to be
constant in which case the phase response can have the form

O(w) =6y — Tw

where 0 is a constant.

e If we assume that 0y = £7/2, a second class of
constant-delay nonrecursive filters is obtained where

T=3N-1)T

h(nT) = —h[(N —1—n)T]
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Constant Delay in Nonrecursive Filters cont'd

e In most applications only the group delay needs to be
constant in which case the phase response can have the form

O(w) =6y — Tw

where 0 is a constant.
e If we assume that 0y = £7/2, a second class of
constant-delay nonrecursive filters is obtained where

T=3N-1)T

h(nT) = —h[(N —1—n)T]

e In effect, a nonrecursive filter can be designed to have
constant group delay over its entire baseband by simply
ensuring that its impulse response is antisymmetrical about its
center.
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Constant Delay in Nonrecursive Filters cont'd

e For even N, the impulse response is antisymmetrical about
the midpoint between samples (N —2)/2 and N/2 as shown:

Center of symmetry
1.0

h(nT) | i | |

—1.0L
(@)
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Constant Delay in Nonrecursive Filters cont'd

e For odd N, the impulse response is antisymmetrical about
sample (N — 1)/2 as shown:

Center of symmetry

1.0 — ~

N=11

|

1

I

I

:

[}

1

|l | |

1

1

: nT = 10T
1

(b)
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Frequency Response of Nonrecursive Filters

® The symmetries in the impulse response discussed lead to some
simple expressions for the frequency response of nonrecursive filters.
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Frequency Response of Nonrecursive Filters

® The symmetries in the impulse response discussed lead to some
simple expressions for the frequency response of nonrecursive filters.

e For the case of a symmetrical impulse response and odd N,

(N—-3)/2
; : N-1)T :
H(eij) — Z h(nT)eJ‘*’"T—i-h[( 5 ) :|ejw(N1)T/2
n=0
+ Z 7anT (A)
n=(N+1)/
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Frequency Response of Nonrecursive Filters

Frame # 12

The symmetries in the impulse response discussed lead to some
simple expressions for the frequency response of nonrecursive filters.

For the case of a symmetrical impulse response and odd N,

(N—3)/2
N-1)T :
e/wT _ Z h nT anT+h|:( 5 ) :|er(N1)T/2
+ Z e JwnT (A)
n=(N+1)/

If we first let N — 1 — n= m and then let m = n, we get

N—-1 N-1
> h(nT)e T = N h[(N—1—n)T]e "
n=(N+1)/2 n=(N+1)/2
(N=3)/2

> h(nT)e wN=1=nT (B)
n=0
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Frequency Response of Nonrecursive Filters cont'd

e From Egs. (A) and (B)

H(*T) = e—jw(N—l)T/z{h [(N—21)T}

(N-3)/2 N1
+ ZO 2h(nT) cos [w (2 - n) T} }
and with (N —1)/2 — n = k, we have
(N-1)/2
H(e*T) = e J«(N-1)T/2 Z ak coswkT
k=0

where ag=h [%} and ax = 2h [(% - k) T]
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Frequency Response of Nonrecursive Filters cont'd

h(nT) N H(e*T)
Symmetrical Odd e Jw(N=1)T/2 Zi’igl)/z ag coswkT
Even e Jw(N-1)T/2 Zﬁ:/f by cos|w(k — 1) T]
Antisymmetrical  Odd e S(N-1)T/2=m /2 S5 N-D/2 5 i kT

Even e J(N-DT/2=7/2 5~ W/2 p infi(k — 1)T]

where ag = h | (SUT] | o = 2h [(N32 — k) T], b =2h[(¥ = k) T
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e The impulse response symmetry conditions described impose

certain restrictions on the zeros of transfer function H(z).
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Location of Zeros

e The impulse response symmetry conditions described impose
certain restrictions on the zeros of transfer function H(z).

e For odd N, we can write

(N=3)/2
B 1 N-1)/2—n  _—[(N-1)/2—n
H) = —m72 Z h(nT)(2(N-1/2=n 5 Z=l(N=1)/2=n])
+%h {(N _21)T] (2° izo)} (C)

where the negative sign applies to the case of antisym-
metrical impulse response.
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Location of Zeros Cont'd

1 (N=3)/2
H(z) = EUEYE Z h(nT) (Z(N_l)/2_" + z_[(N_l)/z_"])
n=0
+%h [(N _21)1 (2° £ 20)} (C)

e With (N —1)/2—n=k, Eq. (C) can be expressed as

(N-1)/2

N(z 1 _
H(z) = 98 = Z(N1)/2 kz_;) %( k2

where ap and aj are given in the table of frequency responses
shown earlier.
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- o NG 1 (N-1)/2
(2)=D5(z) = zwnr2

Z ﬂ(zk +z7F)
2
k=0

e The zeros of H(z) are the roots of

(N-1)/2
Niz)= Y alf+z75)

k=0



Location of Zeros Cont'd

N(z) 1 W2,
_ _ dk ok —k
H(z) = D) = I > S (Z 27

e The zeros of H(z) are the roots of

(N-1)/2
N(z) = Z a(zF £ z75)
k=0
o If we replace z by z71 in N(z), we get
(N-1)/2

Nz H = Y a(zk+7b
k=0
(N-1)/2

=+ Y a(fEzF)=+N(z)
k=0
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N(z™1) = £N(z2)

e The same relation holds for even N, as can be easily shown.
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Location of Zeros Cont'd

N(z™1) = £N(2)

e The same relation holds for even N, as can be easily shown.

e Therefore, if z; = r;e/¥i is a zero of H(z), then its reciprocal
1

z ' = e /¥ /r; must also be a zero of H(z).
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Location of Zeros Cont'd

The property N(z~1) = £N(z) imposes the following constraints
on the zeros of the transfer function:

1. An arbitrary number of zeros can be located at z; = £1 since
-1
z; - ==+1.

1
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Location of Zeros Cont'd

The property N(z~1) = £N(z) imposes the following constraints
on the zeros of the transfer function:

1. An arbitrary number of zeros can be located at z; = £1 since
-1
z; - ==+1.

1

2. An arbitrary number of complex-conjugate pairs of zeros can
be located on the unit circle since

(= 2)(e=2) = (e-e)e—e ) = (2= =) (== 1)
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Location of Zeros Cont'd

The property N(z~1) = £N(z) imposes the following constraints
on the zeros of the transfer function:

1. An arbitrary number of zeros can be located at z; = £1 since
-1
z; - ==+1.

1

2. An arbitrary number of complex-conjugate pairs of zeros can
be located on the unit circle since

(= 2)(e=2) = (e-e)e—e ) = (2= =) (== 1)

3. Real zeros off the unit circle must occur in reciprocal pairs.
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Location of Zeros Cont'd

The property N(z~1) = £N(z) imposes the following constraints
on the zeros of the transfer function:

1.

Frame # 19

An arbitrary number of zeros can be located at z; = 1 since
-1
z; - ==+1.

1

. An arbitrary number of complex-conjugate pairs of zeros can

be located on the unit circle since

(= 2)(e=2) = (e-e)e—e ) = (2= =) (== 1)

Real zeros off the unit circle must occur in reciprocal pairs.

Complex zeros off the unit circle must occur in groups of four,
namely, z;, z¥, and their reciprocals.

i
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z plane

R V%

N—1
poles

‘o 1/z5

polynomials.

Note: Polynomials with these properties are called mirror-image
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This slide concludes the presentation.
Thank you for your attention.
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