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Introduction

» In signal processing, a continuous-time signal often needs to
be interpolated, extrapolated, differentiated at some instant
t = t; or integrated between two distinct instants t; and to.
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Introduction

» In signal processing, a continuous-time signal often needs to
be interpolated, extrapolated, differentiated at some instant
t = t; or integrated between two distinct instants t; and to.

» Such mathematical operations can be performed by using
many classical numerical-analysis formulas.
» Formulas of this type can be readily derived from the Taylor

series.

» This presentation will show that numerical-analysis formulas
can be used to design nonrecursive filters that can be used to
perform interpolation, differentiation, and integration.
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formulas for interpolation.

» The most fundamental numerical analysis formulas are the
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Interpolation Formulas

» The most fundamental numerical analysis formulas are the
formulas for interpolation.

» The value of x(t) at t = nT + pT, where 0 < p < 1, is given
by the forward Gregory-Newton interpolation formula as
x(nT +pT) = (1+ A)Px(nT)

(p—1)

—|14+pa+?2 1 A%+ | x(nT)

where
Ax(nT)=x(nT + T)—x(nT)

is commonly referred to as the forward difference.
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Interpolation Formulas cont'd

» Similarly, the backward Gregory-Newton interpolation formula
gives

x(nT + pT) = (1 — V) Px(nT)

p(p+1)

o1 2P IV 4 x(nT)

= |14+ pV +
where
Vx(nT)=x(nT) —x(nT —T)

is known as the backward difference.
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Interpolation Formulas cont'd

» Another interpolation formula known as the Stirling formula assumes

the form
2 202 _
x(nT +pT) = |1+ %52 + wa“ 4o x(nT)
p
+3 [6x(nT = 1T) 4+ 0x(nT + 37)]
2 _
+"(’2’(3,)1) [0°x(nT = 3T) + &x(nT + 1 7)]
p(p* — 1)(p* - 2%)
2(51) [°x(nT —3T) +8°x(nT +17)]
where 6x(nT+4T) =x(nT + T) — x(nT)

is known as the central difference.

Frame # 5 Slide # 9 A. Antoniou Digital Signal Processing — Sec. 9.5



Interpolation Formulas cont'd

» The forward, backward, and central differences are linear operators.

Hence higher-order differences can be readily obtained, e.g.,

53X(nT +1T) = 52 [6x(nT+1T)] = 82[x(nT + T) — x(nT)]

= 0[0x(nT + T) —éx(nT)]

= 6{x(nT + %T) —x(nT + %T)

— [X(HT+ %T) fx(an %T)}}

=6x(nT+3T)—20x(nT +3T) +6x(nT = 3T)

= [x(nT 4+2T) = x(nT + T)] = 2[x(nT + T) — x(nT)]
+[x(nT) —x(nT — T)]
x(nT 4+2T) —=3x(nT + T)+3x(nT) —x(nT = T)
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Differentiation Formulas

» The first derivative of x(t) with respect to time at instant
t =nT + pT can be expressed as

dx(t) _dx(nT + pT) " dp
dt |i—ptipT dp dt
_ 1dx(nT +pT)
T dp
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Differentiation Formulas

» The first derivative of x(t) with respect to time at instant
t =nT + pT can be expressed as

dx(t) _dx(nT + pT) " dp
dt |i—ptipT dp dt
_ 1dx(nT +pT)
T dp

» By differentiating each of the interpolation formulas
considered with respect to p, corresponding differentiation
formulas can be obtained.

Frame # 7 Slide # 12 A. Antoniou Digital Signal Processing — Sec. 9.5



Integration Formulas

» Integration formulas can be derived by writing
5] P2
/ x(t) dt = T/ x(nT + pT) dp
nT 0

where
nT <tb<nT+T
and
th — nT

th=nT +Tpy or pr= T

with 0 < pp < 1.
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Digital Interpolators, Differentiators, Integrators

» Nonrecursive filters that can perform interpolation,
differentiation, or integration can be obtained by expressing
one of the available numerical formulas for these operations in
the form of a difference equation.
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Digital Interpolators, Differentiators, Integrators

» Nonrecursive filters that can perform interpolation,
differentiation, or integration can be obtained by expressing
one of the available numerical formulas for these operations in
the form of a difference equation.

» Let x(nT) and y(nT) be the input and output of a
nonrecursive filter and assume that y(nT) is equal to the
required function of x(t), i.e.,

ynT) = Fxe|_
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Digital Interpolators, Differentiators, Integrators Cont'd

» For interpolation, differentiation, or integration, we would

have
T) = x(t
y(n ) X( ) t=nT-+pT
dx(t)
T) =
y(n ) dt lt=nT+pT
or

nT+pT
y(nT) = /T «(t) dt

as appropriate.
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Digital Interpolators, Differentiators, Integrators Cont'd

» By choosing an appropriate numerical formula for the
operation of interest and then eliminating all the difference
operators using their definitions, we can obtain a difference

equation of the form

M

y(nT) = Z aix(nT —iT)

i=—K
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Digital Interpolators, Differentiators, Integrators Cont'd

» By choosing an appropriate numerical formula for the
operation of interest and then eliminating all the difference
operators using their definitions, we can obtain a difference
equation of the form

M

y(nT) = Z aix(nT —iT)

i=—K

» Now by applying the z transform, a transfer function

M
H(z)= > h(nT)z™"

n=—K

can be deduced.
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H(z) = > WnT)z"

=K

X(nT) O—

H(z)

—0 y(n7T)



Digital Interpolators, Differentiators, Integrators Cont'd

Interpolation:

x(t)
x(nT) e 4
—,:—«
01 2 3 (! nT
yT) o
01 2 3

Frame # 13 Slide # 20 A. Antoniou Digital Signal Processing — Sec. 9.5



Digital Interpolators, Differentiators, Integrators Cont'd

» For the case of a forward- or central-difference formula, the
digital filter obtained turns out to be noncausal.
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Digital Interpolators, Differentiators, Integrators Cont'd

» For the case of a forward- or central-difference formula, the
digital filter obtained turns out to be noncausal.

» For real-time applications it is necessary to convert a
noncausal into a causal design.
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Digital Interpolators, Differentiators, Integrators Cont'd

» For the case of a forward- or central-difference formula, the
digital filter obtained turns out to be noncausal.

» For real-time applications it is necessary to convert a
noncausal into a causal design.

» This is done by multiplying the transfer function by an
appropriate negative power of z, which corresponds to
delaying the impulse response of the filter to ensure that
h(nT) =0 for n < 0.
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» A signal x(t) is sampled at a rate of 1/T Hz.

Design a sixth-order differentiator with a time-domain
response

dx(t)
T)=—+*
y(n ) dt lt=nT
Use the Stirling formula.



» Solution From Stirling’s formula for interpolation

dx(t 1dx(nT + pT
y(nT) = >;(t) _ 1 X(nd pT)
t=nT+pT P p=0
= 5 [0x(nT ~ 3T) + ox(nT + 47)]
1
~ T [53x(nT — %T) + 53x(nT+ %T)]
1
+60—T[65x(nT—%T)+55x(nT+%T)]+---
o e = = = wae



» From the definition of the central difference, we get

5x(nT —3T) 4+ 6x(nT+4T) = x(nT + T) —x(nT = T)
Sx(nT —3T)+83x(nT +4T) = x(nT +2T) —2x(nT + T)
+2x(nT — T) —x(nT —2T)
Fx(nT = 3T) +&x(nT +4T) = x(nT +3T) — 4x(nT +2T)
+5x(nT 4+ T)—=5x(nT —T)
+4x(nT —2T) —x(nT —3T)
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» Hence

y(nT) = 60T[x(nT—i—3T) Ox(nT 4+ 2T) +45x(nT + T)

—45x(nT — T) +9x(nT —2T) — x(nT — 3T)]
and, therefore

1

H(z) = g5 (2* = 02° + 452 — 45271 +.9272 — 27%)

» Note that the differentiator has an antisymmetrical impulse
response, i.e., it has a constant group delay, and it is also
noncausal.

» A causal filter can be obtained by multiplying H(z) by z=3
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method.

» Differentiators can also be designed by employing the Fourier series
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Differentiators Using the Fourier Series Method

» Differentiators can also be designed by employing the Fourier series
method.

» An analog differentiator is characterized by the continuous-time
transfer function

H(s)=s
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Differentiators Using the Fourier Series Method

» Differentiators can also be designed by employing the Fourier series
method.

» An analog differentiator is characterized by the continuous-time

transfer function
H(s)=s

» Hence a corresponding digital differentiator can be designed by

assigning _
HEe“T) = jw for 0< |w| < ws/2
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Differentiators Using the Fourier Series Method

» Differentiators can also be designed by employing the Fourier series
method.

» An analog differentiator is characterized by the continuous-time

transfer function
H(s)=s
» Hence a corresponding digital differentiator can be designed by
assigning

HEe“T) = jw for 0< |w| < ws/2

» Then on assuming a periodic frequency response, the appropriate
impulse response can be determined.
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Differentiators Using the Fourier Series Method

» Differentiators can also be designed by employing the Fourier series
method.

» An analog differentiator is characterized by the continuous-time
transfer function
H(s)=s

» Hence a corresponding digital differentiator can be designed by
assigning _
HEe“T) = jw for 0< |w| < ws/2

» Then on assuming a periodic frequency response, the appropriate
impulse response can be determined.

» Gibbs' oscillations due to the transition in H(e/*T) at w = w,/2 can
be reduced, as before, by using the window technique.
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» Design a sixth-order differentiator by employing the
Fourier-series method.

Use (a) a rectangular window and (b) the Kaiser window with
a=3.0.



» Solution Using the Fourier-series method, the impulse
response of the differentiator can be obtained as

ws /2 ]
h(nT) = L jwenT duy = — 1
Ws J—ws/2

ws /2
— 2wsin(wnT) dw
Ws 0



> Using the Fourier-series method, the impulse
response of the differentiator can be obtained as

1 ws/2 1 ws/2

- JjwnT :

h(nT) = — Jwe?" dw = —— 2wsin(wnT) dw
Ws J w2 Ws Jo

» On integrating by parts, we get

1
h(nT) = SpcosTn— sinmn
or
0 forn=0
h(nT) = 1 _
——cosTn otherwise
nT
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» If we now use the rectangular window with N = 7, we deduce

1
Hy(z) = 6_T(2Z3 —322 46262143272 -2773)



» If we now use the rectangular window with N = 7, we deduce

1

Hy(z) = 6T

(22° =322+ 6z -6z +3272 -2273)
» Similarly, if we multiply the impulse response by the Kaiser
window function wx(nT) we get

3

Hu(z) = > wk(nT)h(nT)z™"

n=-3
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» If we now use the rectangular window with N = 7, we deduce

1

Hy(z) = 6T

(22° =322+ 6z -6z +3272 -2273)

» Similarly, if we multiply the impulse response by the Kaiser
window function wx(nT) we get

3

Hu(z) = > wk(nT)h(nT)z™"

n=-3

» The parameter « in the Kaiser window can be increased to
increase the in-band accuracy or decreased to increase the
bandwidth.
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If we now use the rectangular window with N =7, we deduce

1

Hy(z) = 6T

(22° =322+ 6z -6z +3272 -2273)

Similarly, if we multiply the impulse response by the Kaiser
window function wx(nT) we get

3

Hu(z) = > wk(nT)h(nT)z™"

n=-3

The parameter « in the Kaiser window can be increased to

increase the in-band accuracy or decreased to increase the
bandwidth.

The design of digital differentiators that would satisfy
prescribed specifications is considered in Chap. 15.
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This slide concludes the presentation.
Thank you for your attention.
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